
CSci 136 Supervised Programming Lab
Lab 3

Prof. Stewart Weiss

Lab 3: Generating and Analyzing Random Strings

Scientists routinely need random data for experiments and simulations. Natural events appear to be
random, and in order to study and simulate them, scientists use randomization. Computer scientists
especially need to know how to generate random data since they are the ones who are often called
upon to design the software. It is sufficient to be able to generate random numbers, because if we
have a sequence of random numbers, we can generate random data of other types from it.1

There is a contradiction in the idea that a computer program can generate random numbers, because
if a computer program generates anything, it is the result of an algorithm and is therefore not
random! A computer program can generate numbers that look random because no mere mortal
can detect a pattern in them, nor could another very smart computer, even if given a very long
time. Such “random looking numbers” are called pseudo-random numbers.

In this exercise you will write a program that generates pseudo-random text strings of a specific
form, consisting only of the lowercase letters ’a’, ’c’, ’g’, and ’t’. In other words, the program
will generate a string that contains just these letters, but the order of the letters and the quantity of
each type of letter is pseudo-random. Such a string will be called a pseudo-random DNA string
here. Once you have successfully completed this first program, you will enhance it a bit.

Exercises

Problem 1. Write a program that begins by prompting a user to enter a positive integer N. You can
assume that the user will always enter an integer, but the program must detect if the user entered
a negative integer or zero, and if she did, it should exit with an error message. The program then
prompts the user to enter the name of file into which it will store the generated DNA string. The
program then generates a pseudo-random DNA string of length N and writes it into a file with the
chosen name, in its current working directory.

Problem 2. Once the program from Problem 1 is working correctly, and only when it is working
correctly, you will make a small modification to it. In addition to writing the pseudo-random DNA
string to the file, it must display on the terminal window the fractions of ’a’s, ’c’s, ’g’s, and ’t’s
in the string. For example, if the string is length 50 and it contains exactly 20 ’a’s, 10 ’c’s, 5 ’g’s,
and 15 ’t’s, then it would display something like:

a: 0.4000 ; c: 0.2000 ; g: 0.1000 ; t: 0.3000

Notice that the sum of these fractions must be 1.0. The program should display the fractions with
four digits of precision to the right of the decimal point.

1In fact it is a theorem of computer science that all data, however complex it may appear, is representable as a set
of non-negative integers.

1



CSci 136 Supervised Programming Lab
Lab 3

Prof. Stewart Weiss

Testing Your Work

Before you submit your program, you have to make sure it is correct. It is not easy to test a
program that generates random data, because in order to test, one needs to reproduce a result
repeatedly. The srand() function is useful here. If srand() is given the same value, the sequence
of random numbers produced by rand() will be the same. You should make sure also that the
length of the string is correct, that the data looks random, and that your fractions add up to 1. If
you give srand() a new value in each run of the program, then you should see a different DNA
string each time.

What to Submit

Unlike the previous lab assignment, you will submit just one program. If you finished the second
problem and it is working correctly, submit that program and not the first. I will not look at the
first program and it will not count toward your grade.

If you did not get the second program working, but the first was working, you may either submit
the first, or submit the partially working second one. The first program is worth only 6 out of 10
points. The second is 10 points. If the second is almost working, and you think you will lose fewer
than 4 points on it, submit it. If you know it needs much more work, submit the first instead.

Submit your program, whichever it is, by the end of today’s lab, i.e., before the end of the class at
2:00 P.M. The instructions are just like the previous lab’s:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab03/submissions

whose name is your username. For example, I would create the directory sweiss.

2. Copy your program, which should be named either username _lab03a.cpp or
username _lab03b.cpp to this directory. You will lose 5% of the grade if you misname the
file!

3. Change the permission on the directory that you created so that no one else can read or
modify it. You do this with the commands

$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab03/submissions

$ chmod 700 username

Do not submit executable files. Remember to document your code (both preamble and comments
in the code) and make it easy to read. Your work will be judged using the rubric I outline in the
Programming Rules document.

There are absolutely no extensions to the deadline. You can submit a revised version of the program
by 10:00 P.M. on Thursday, Sept. 13 for partial credit. If you do, you must name it with a different
name than what you first posted, e.g., username _lab03b_v2.cpp. and put it in the same directory
as the original. It must be a revision of the original file, with only fixes to things that were not
working before. I will adjust the grade based on how well the first version worked and how many
changes you made.

2


