
CSci 135 Software Analysis and Design I
Lab 6

Stewart Weiss

Lab 6: Software Testing and Debugging

Overview

The purpose of these exercises is threefold:

1. to give you practice in identifying and correcting syntax errors in programs,
2. to give you practice in identifying and correcting obvious runtime errors in programs, and
3. to give you practice in devising software tests.

The first problem asks you to compile a program, look at the error messages produced by the compiler,
and then read the program and correct the mistakes. The faster you can do this, the more efficient you will
become at writing syntactically correct software. You do not need to know what the program is supposed
to do because the errors are not in logic but in using the language properly.
The second problem asks you to compile a program, which will compile without error, and then run it.
When it runs, there will be obvious errors. You will not need to know what the program is supposed to
do because the program’s behavior will be unacceptable no matter what it is. For example, it might loop
forever or produce no output or produce garbled output. You will have access to the source code so that
you can correct the mistake(s) or at least suggest what is wrong.
The third problem asks you to test a program to determine whether it has any faults, and if so, to determine
what they are. You will not be able to see the source code of the program, but you will be able to run it.
This type of testing is called black box testing, because the program is essentially like a black box, an object
whose inside is invisible to you. You will be given a precise description of what the program is supposed
to do, which is called a requirements specification. This specification can be used to decide what tests to
use on the program.

A Bit About Software Testing

A test is an input to a program. A test case is an input together with the expected output. Running a
program on a test input is meaningless unless you know what the output for that test input should be. For
example, if the program’s requirements specification states that the program computes the positive square
root of any non-negative number, then a test case could be (input = 25.0, expected output = 5.0), because
5.0 is the positive square root of 25.0. Therefore, your job as a program tester is to devise a suitable set of
test cases. Such a set is often called a test suite.
Usually, before you start testing the program, you would create the list of all test cases – inputs and expected
outputs – and put that list into a file, perhaps into a spreadsheet. When you run the program on a test, either
it passes or fails the test. If a program fails the test, we say that the test exposed an error in the program.
A spreadsheet might contain information such as when you tested it, whether the error was reported and
corrected, and so on.
If a program passes all of your tests, you have to decide whether the program is error-free. Just because it
passed all of the tests does not mean that it has no errors. It might mean that your test cases were not very
good. If you think your tests were thorough enough to detect all possible errors in the program, then you
can conclude that the program is error-free. You might decide that the tests were not thorough enough and
continue testing further.
How can you decide whether the tests were thorough enough? Many people have spent much time trying
to answer this question, and there are hundreds of scientific articles about the subject. We cannot begin to
tackle that problem in very much depth here. However, there is some common sense that you can apply.

1



CSci 135 Software Analysis and Design I
Lab 6

Stewart Weiss

If the program’s specification says that for all inputs that satisfy some condition C, the output is supposed
to be X, and for inputs that satisfy a different condition D, the output should be Y, then clearly any good
set of test cases would include some inputs that satisfy condition C and some that satisfy condition D. This
type of thinking will suffice in the exercises that you have to do today.

Exercises

This is a three-part lab.

Problem 1. There is a directory named syntaxbugs in the cs136labs/lab06 directory. Within it are five
files named syntaxbug01.cpp, syntaxbug02.cpp, ..., syntaxbug05.cpp. None of these compile without
error. Study the error messages and find a fix, then make sure your corrected file compiles. Name the
corrected version of syntaxbug0x.cpp syntaxbug0x_fixed.cpp, x=1,2,3,4,5. In the corrected program, put
a comment line like this:
/* ERROR FIXED HERE: */

to the right of the code on the line that you fixed. If there is more than one line, put this on each such line.
Each corrected program is worth 0.5 out of 10 points for this lab.

Problem 2. There is a directory named runtimebugs in the cs136labs/lab06 directory. Within it are three
files named runtimebug01.cpp, runtimebug02.cpp, and runtimebug03.cpp. Each of these compiles with-
out error but does not run correctly. Determine what is wrong with each and try to correct the code. Make
sure that your corrected code compiles and runs correctly. Follow the same instructions as in Problem 1
and add comment lines to indicate where you fixed the program. Once it is correct, name the corrected
version runtimebug0x_fixed.cpp, x =1,2,3. Each corrected program is worth 1 out of 10 points for this lab.

Problem 3. The third directory is named softwaretesting. It contains the following files:

program_specification A precise description of what the program classifytriangle is supposed to do.
classifytriangle1 A version of classifytriangle that does not work correctly.
classifytriangle2 A version of classifytriangle that does not work correctly.
classifytriangle3 A version of classifytriangle that does not work correctly.
angleof A program that can be useful in checking whether the output of classifytriangle is correct.

Your job is to find tests of the three classifytriangle programs that expose their errors. Each of these
programs has one bug, i.e., a single mistake in its code that causes one or more inputs to result in incorrect
output. Therefore, for each it is enough to find a single test case that exposes that bug. When you find the
test case, your job is to characterize what the program is doing wrong. In other words, it is not enough
to say, for example, that the program does not work when given the input (5,12,15). You also have to
say something like, “it appears that the program sometimes says a triangle is acute when it is not”, or “it
appears that it sometimes accepts inputs that are not valid triangles.” You will get partial credit if you find
a bug but cannot describe it accurately. You will get full credit if you describe it accurately as well.
In case you do not remember your geometry, a triangle is acute if all angles in it are less than 90 degrees, it
is obtuse if there is a single angle greater than 90 degrees, and it is a right triangle if there is 90 degree angle
in it. These are mutually exclusive possibilities. A triangle is scalene if no two sides are equal, isosceles
if exactly two sides are equal, and equilateral if all three sides are equal. The program angleof accepts
command line arguments like triangleclassify.

angleof a b c

will output the number of degrees in the angle between the sides whose lengths are a and b. You might
find this useful when you need to know whether the classifytriangle program correctly identified the
type of triangle.

2



CSci 135 Software Analysis and Design I
Lab 6

Stewart Weiss

For this problem, you should create a single file named triangletests. For each of the buggy classifytriangle

programs, write the test case that exposes an error and a description of what you believe is the error. There
should be three short paragraphs in this file. Each correctly identified error is worth 1.5 out of 10 points for
this lab.

What and How to Submit

Submit your work, however complete it is, by the end of today’s lab, i.e., before the end of the class at 2:00
P.M. The instructions are just like the previous lab’s:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab06/submissions

whose name is your username.
2. Put all of your files into this directory. Make sure they are named correctly. There should be five files

from Problem 1, three from Problem 2, and one from Problem 3. You will lose 5% of the grade if you
misname the file!

3. Change the permission on the directory that you created so that no one else can read it. You do this
with the commands
$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05/submissions

$ chmod 700 username

Remember to add the comment lines described in the problems above. There are absolutely no extensions
to the deadline for this lab.

3


