
CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

Recursion and Problem Solving

1 Problem Solving and Backtracking

Backtracking is an algorithm paradigm that can be used for �nding one or more solutions to certain types
of computational problems. It works by incrementally building partial solutions, checking if a partial solution
can be extended to a complete solution, and discarding a partial solution if it determines that it cannot be so
extended. It is best understood through examples. We begin with a practical, non-computational, example.

Imagine that you are in a forest without a map. The forest consists of thick brush and trees with many paths
through them. You are at a point that we will call point A. You are trying to get to point B. There are
many forks along the path you are on, sometimes it forks into over a dozen paths. Without a map that lets
you know which paths to take, you need a methodical way to get to point B. It may even be possible that
there is no path from A to B. The only thing you are guaranteed is that none of these paths are cyclical, so
you will never return to a place you already visited by going straight on any path from that point.

Backtracking is a method that can organize your search for B. Suppose you use the following rules:

1. Walk straight until you come to a fork in the road (the end of the current partial solution) or you reach
B. If you reach B, you are done (a complete solution.)

2. At every fork in the road, always choose the rightmost path that you have not yet tried (a systematic
way to extend a partial solution.) If, when you come to a fork, you have tried all of the paths possible
at that fork already, then turn around and walk back to the closest fork you just left (this is the
backtrack part), mark the branch on which you traveled back as �tried already� (a discarded partial
solution), and then repeat this step.

3. If walking back to the nearest fork (backtracking) brings you back to point A because all branches of
the �rst fork failed to reach B, and there are no other branches to try at A, then there is no path to
B.

This algorithm will allow you to reach B if there is a path to it. The aspects of it that make it an example of
backtracking are that it methodically tries all solutions by tracing backwards when a search leads to failure
and choosing the next possible search. This is an example of a problem that is considered to be solved if
you �nd a single solution. Usually if you are lost in a forest you just want to �nd the way out, rather than
�nding all possible ways out. If we wanted to �nd all possible paths from A to B, then in step 1, we would
not terminate if we reached B. In addition, in step 2, we would not consider paths as being discarded unless
they failed to reach B.

For backtracking to be a useful technique, the problem to be solved must admit to two conditions:

1. There has to be a concept of a partial candidate solution.

2. There must be an e�cient (fast) test to determine whether a partial solution can be completed to a
valid solution.

1.1 Backtracking and Recursion

Recursion is a useful tool for writing backtracking algorithms because it implicitly traces back to the last
guess for you. When a recursive function returns to the point immediately after it was called, it has traced
backwards. By putting the recursive calls into either a loop or a set of cascading if-statements, you can
organize the function to systematically check all possible guesses.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

Example 1: The Sum of Four Squares

LaGrange's 4-squares theorem states that any natural number can be written as the sum of four squares
(including 0 if need be.) Suppose we wanted an algorithm that, given any natural number, could �nd four
squares whose sum equals the number. Backtracking can do this. The idea is to pick a square less than
the number, subtract it, and then �nd three numbers that add up to the di�erence. If we succeed, then we
found the four numbers. If we do not, then we back up to the �rst number we picked and try a di�erent �rst
number. We can proceed by picking the smallest �rst number �rst, or by picking the largest �rst number
�rst. Either way we can proceed methodically. The algorithm below picks the smallest number �rst.

1 i n t t ryout_so lut ion (i n t number , i n t num_squares)
2 {
3 i n t i ;
4
5 i f (number == 0) {
6 // I f number == 0 i t can be wr i t t en as the sum of however many 0 ' s we
7 // need so we have succeeded .
8 re turn true ;
9 }
10
11 // a s s e r t : number > 0
12 i f (num_squares == 0)
13 // I f we reach here , s i n c e number > 0 and we have used up our quota o f
14 // four squares , we could not f i nd 4 squares whose sum i s number
15 re turn f a l s e ;
16
17 // try to f i nd a number i such that i ∗ i i s l e s s than number
18 // i f we do , then subt rac t i ∗ i from the number and r e c u r s i v e l y
19 // do the same th ing f o r number−i ∗ i with one l e s s square than be f o r e .
20 // i f one p a r t i c u l a r i f a i l s , we try the next i . This i s the backtrack ing
21 // part .
22 f o r (i = 1 ; i ∗ i <= number ; i++) {
23 i n t square = i ∗ i ;
24 i f (t ryout_so lut ion (number − square , num_squares −1)) {
25 p r i n t f (" %d" , square) ;
26 i f (num_squares < 4)
27 p r i n t f (" + ") ;
28 re turn true ;
29 }
30 }
31 return f a l s e ;
32 }

The above function would be called with an initial value of 4 for the second parameter, num_squares, as in:

if (tryout_solution(value, 4))

printf (" = %d\n", value);

The function attempts to �nd num_squares squares that sum to number. If number is zero, it is trivial to
satisfy so it returns true. Since each recursive call diminishes num_squares, it is possible that it is zero.
If number is not zero but num_squares is zero, it means that it has run out of chances � it has used four
squares but their sum is not the original number, so it returns false. Otherwise there is still hope � for
each square less than number, it calls tryout_solution(number-square, num_squares-1), hoping that
one of those squares will result in tryout_solution() returning true. If it does, it means that it found
the remaining squares and that square is one of the squares that add up to number. It prints the value
of square (with a '+' after if need be), and returns to the calling function. If the main program is named
find_lagrange_squares, the output could look like

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

$ find_lagrange_squares 2000

1764 + 196 + 36 + 4 = 2000

Example 2: The Eight Queens Problem

The eight queens problem is based on chess. A chess board is an eight by eight grid of squares. A queen is
a piece that can attack another piece if and only if that piece lies in the same row or column as the queen,
or along either of the two diagonals through the queen's square. The Eight Queens Problem asks for a set
of eight squares on which to place eight queens in such a way that none can attack any other.

There is a natural backtracking solution to this problem. Since there must be exactly one queen in each
column of the board, and exactly one queen in each row, every queen must be in its own unique row and
column. We arbitrarily use the columns of the board to organize the search. Assume the columns are
numbered 1 to 8. Try to think recursively now. Imagine that you have placed queens on the board already
and that the queens that have been placed so far cannot attack each other. In other words, so far the queens
on the board are a potential solution. Initially this is true because no queens are on the board. You have
been placing the queens on the board by putting them in successive columns. Now suppose further that you
have a means of checking, for any given potential position in which you want to place the current queen,
whether doing so would put it under attack by one of the queens already on the board. The task at the
moment is to place the queen in the current column, so you try each row position in that column to see if
it leads to a solution. If there is a row that is safe in this column, then you place the queen and recursively
advance to the next column, trying to place the next queen there, unless of course you just placed the 8th
queen, in which case you found a solution. However, if there is no row in the current column that is safe
for the queen, then you have to backtrack � you have to go back to the queen you placed in the preceding
column and try a di�erent row for it, repeatedly if necessary, until it is safe, applying this same recursive
strategy there. If you backtrack to the very �rst queen and cannot �nd a row for it, then there is no solution
to this problem.

The following pseudocode function implements this strategy and is a good example of a backtracking algo-
rithm.

bool placeQueens(int current column, int current row)

{

// Base case. Try to place Queen in a column after end of board

// if we reach here it means we placed all queens on board

if (Current Column >= 8) {

successfully placed all queens so exit with success

}

bool isQueenPlaced = false;

while (Queen is not placed in current Column &&

Current Row < 8)

{

// If the queen can be attacked in this position, then

// try moving it to the next row in the current column.

if (isUnderAttack(current row, current column))

current row = current row + 1;

else {

// Queen is not under attack so this position is good.

// Advance to next column and try starting in row = 0

isQueenPlaced = placeQueens(current column+1, 0);

// If it wasn't possible to put the new Queen in the next

// column, backtrack by deleting the new Queen and

// removing the last Queen placed and moving it down one row.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

if (!isQueenPlaced)

current row ++;

} // end if

} // end while

return isQueenPlaced;

} // end placeQueens

The details are left to the reader.

2 Recursion in the De�nition of Languages

Another use of recursion is to de�ne in�nite sets of various types. There are always at least two rules. The
�rst is analogous to a base case in an induction proof, and can be called the basis clause or simply the basis.
The second is the inductive clause. For example, the set of natural numbers, denoted N, can be de�ned by
the following recursive de�nition:

1. 0 ∈ N.

2. n ∈ N =⇒n+ 1 ∈ N

Repeated application of Rule 2 generates the set of all natural numbers.

Implicit in any de�nition of a set is that the set contains nothing but what the de�nition places into it. This
does not have to be stated explicitly. The fact that 1.5 is not a natural number is because it is not placed
into the set by either of Rules 1 or 2. Some authors make this rule explicit and call it the extremal clause.

A more interesting set of numbers is de�ned by this recursive de�nition:

1. 0 ∈ A

2. n ∈ A =⇒2n+ 1 ∈ A

If you apply Rule 2 repeatedly, you will see that this set consists of the numbers 0, 1, 3, 7, 15, 31, and so
on, which is the set {2n − 1|n ∈ N}.

These two examples show that recursive de�nitions generate the numbers that are in the set by repeated
application of the rules.

2.1 Grammars

Sets of words are called languages. Every language has an underlying alphabet, which is the set of symbols
used to form the words. Just as sets of numbers can be generated by recursive de�nitions, so can sets of
words. A recursive de�nition that de�nes a language is called a grammar. There are various conventions
for the notation used in grammars. We will not follow the conventions exactly. As long as the notation is
well-de�ned, it does not matter what it looks like.

2.2 Syntax of Grammars.

A rule in a grammar is of the form

variable = replacement_string

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

which means that the variable on the left can be replaced by the replacement string on the right. The
replacement string is a sequence of variables and/or symbols of the underlying alphabet. When a variable
appears in the replacement string, it is enclosed in angle brackets (<>) to distinguish it from the non-variables
in the replacement. Grammars usually have a designated start variable, which is the one that appears on
the left-hand side of the rule and is the �rst rule to be applied. Some books use a special letter such as S to
denote this, but here it is enough to use a symbol that is self-explanatory. When a variable can be replaced
by more than one replacement string, we use a vertical bar as a symbol meaning �or�. An example of a
grammar over the alphabet consisting of the letters a, b, and c is

1. PAL = a <PAL> a | b <PAL> b | c <PAL> c

2. PAL = a | b | c

3. PAL =

Rule 2 speci�es that PAL can be replaced by any of the letters a, b, and c. Rule 3 speci�es that PAL can be
replaced by an empty string (also called the null string.) What words are in this language? The null string
is in this language, as are �a�, �b�, and �c�. By applying Rule 1 and then Rule 3, �aa�, �bb�, and �cc� are in
it too. For example, to get �aa' we write

PAL => a<PAL>a => aa

By using the �rst two rules like this we get nine words: �aaa�, �aba�, �aca�, �bab�, �bbb�, �bcb�, �cac�, �cbc�,
and �ccc.� What do these words have in common? They are all the same when read forward or backward.
A palindrome is a word that is the same read forwards and backwards, such as �radar� or �madam.� This
language is the language of all palindromes over the alphabet consisting of the letters a, b, and c. This is
not a proof of this claim, although the claim is true. Proving that a grammar generates a particular set is
beyond the scope of these notes; toprove this you need to show that every word that is generated by it is a
palindrome and that every palindrome has a �derivation� from the start symbol PAL of this grammar.

Exercise 1. Write a recursive function which, when given a C string s, returns true or false depending on
whether it is a palindrome.

2.3 Genetics

The word palindrome in the context of genetics has a slightly de�nition than this. A DNA string, also
called a DNA strand, is a �nite sequence consisting of the four letters A, C, G, and T in any order1. The four
letters stand for the four nucleotides: adenine, cytosine, guanine, and thymine. Nucleotides, which
are the molecular units from which DNA and RNA are composed, are also called bases. Each nucleotide has
a complement among the four: A and T are complements, and C and G are complements. Complements are
chemically-related in that when they are close to each other, they form hydrogen bonds between them.
For example, the complement of TGGC is ACCG, and the complement of TCGA is AGCT. Notice that this last
string has the property that its complement is the same as the string when read backward.

A sequence of nucleotides is palindromic if the complement read right to left is the same as the string read
from left to right. For example, the DNA string TGCAACGCGTTGCA is palindromic because the complement is
ACGTTGCGCAACGT, which when read backwards is the original string.

Exercise 2. Write a recursive function that, when given a DNA string s, returns true or false depending
on whether s is palindromic. Note that this is di�erent from the preceding exercise.

1Some sources use lowercase while others use uppercase. It does not matter.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

2.4 In�x Expressions

An important class of languages relevant to the programmer are the languages of algebraic expressions.
Intuitively, an algebraic expression is an expression made up of constants and/or variables upon which the
operations of addition, subtraction, multiplication, and division are applied. Parentheses are used to change
the order of evaluation in the standard form of these expressions, which are known as in�x expressions,
because the operator is always in between its operands.

A grammar that generates the set of all in�x expressions whose operands are single digit numbers is:

IE = <IE> <operator> <IE>

IE = (<IE>)

IE = <token>

operator = + | - | * | /

token = 0 | 1 | 2 | 3 | ... | 9

Examples of words in this language (with spaces added for ease of reading):

1 + 8 / 3 - (4 - 5) * 6

5 + 5 + 4 * 3 * (3 - (2 - (9 + 2) / 2))

A grammar that generates the set of all such expressions whose operands are valid C++ identi�ers and/or
numeric literals requires more rules; this is a simpli�cation.

2.5 Pre�x Expressions

Unparenthesized in�x expressions are ambiguous in the sense that, unless a precedence is established for the
order in which the operators should be applied, an expression could have more than one value. For example,

6 + 4 * 3

can be interpreted as 6 + (4 ∗ 3) = 18 or as (6 + 4) ∗ 3 = 30 depending upon whether the addition or
multiplication takes place �rst. Operators are given precedence to disambiguate these expressions, and
parentheses are used to change the order of evaluation. However, there are unambiguous ways to write
algebraic expressions.

A pre�x expression is one in which the operator precedes its two operands, as in

1. +ab

2. *+abc

3. +/ab*-cde

The �rst expression is the same as the in�x a+b. The second applies * to the operand +ab and the operand
c, which means that it is equivalent to (a+b)*c. The third applies + to the operand /ab and the operand
*-cde, which is in turn is * applied to (-cd) and e, which means that it is equivalent to (a/b)+(c-d)*e.
The general rule is that the operator is applied to the two operands that immediately follow it. The operands
may themselves be pre�x expressions containing operators, so this procedure is applied recursively.

Pre�x expressions are unambiguous under the rules by which they are evaluated. The language of pre�x
expressions whose operands are single lowercase letters is de�ned by the following grammar:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

prefix = <identifier>

| <operator> <prefix> <prefix>

operator = + | - | * | /

identifier = a | b | c | ... | x | y | z

Notice that there are no parentheses in these expressions. This leads to recursive algorithms for recognizing
and for evaluating pre�x expressions. The grammar tells us that a pre�x expression is either a single identi�er,
or it is an operator followed by two pre�x expressions. The recognition algorithm should look at the next
character, and if

• it is an identi�er, it is a pre�x, and

• if it is an operator, it has to be followed by two pre�x expressions.

The problem is �nding where the �rst pre�x ends and the second begins. The key observation is that if you
add any characters to the end of a valid pre�x expression, you break it � it is no longer a pre�x expression.
This implies that if we scan across a string and we �nd the end of a pre�x expression, this must be the only
end. For example, if we scan +d*bc, starting at the + character, then the character immediately after +, i.e.
the d, must be the start of the �rst operand, which is a pre�x expression. Since d is a pre�x expression all
by itself, we know it ends there; no other characters can be part of the �rst operand of +. Similarly, when
we scan further and see the * we begin to look for two more pre�x expressions. If we �nd that the �rst ends
at the b, we know that the next character (the c) is the start of the second pre�x expression.

Another example:

+/ab-cd

If this is a pre�x it is of the form +E1E2 where E1 and E2 are both pre�x expressions. Since E1 begins
with /, it is of the form /E3E4 where E3 = a and E4 = b. Also, E2 is of the form −E5E6 where E5 =c and
E6 = d. The key is therefore to write a function that �nds the end of a pre�x expression.

2.5.1 Recognizing Pre�x Expressions

An algorithm to �nd the end of a pre�x expression:

int end_of_prefix(const string & prefix_str, const int first)

{

int last = prefix_str.length() - 1; // index of last character in string

if (first < 0 || first > last) // first is out of range

return -1;

char ch = prefix_str[first]; // get character at position first

if (is_identifier(ch)) // if an identifier

return first; // return first since it is also the

// end of its own prefix

else if (is_operator(ch)) {

// recursive call to find end of prefix that starts at the character

// immediately after first

int first_end = end_of_prefix(prefix_str, first + 1);

// check if the call was able to find an end

// Return of -1 means it failed

if (first_end > -1)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

// It succeeded, so return the end of the prefix after it, which

// starts at first_end+1

return end_of_prefix(prefix_str, first_end + 1);

else return -1;

}

else

return -1;

}

Given the preceding algorithm, it is trivial to check whether a string is a pre�x expression:

bool is_prefix(string str)

{

last_char = end_of_prefix(str, 0);

return (last_char >= 0 && last_char == str.length() -1);

}

2.5.2 Evaluating Pre�x Expressions

A recursive algorithm that evaluates pre�x expressions:

// This algorithm modifies its argument in the process of evaluating it.

float evaluate_prefix(string & prefix_str)

{

char ch = prefix_str[first]; // get character at position first

// Delete first character from prefix_str;

prefix_str = prefix_str.substr(first+1);

if (is_identifier(ch))

return value of the identifier;

// if the character is an operator, then

else if (is_operator(ch)) {

op = ch;

operand1 = evaluate_prefix(prefix_str);

operand2 = evaluate_prefix(prefix_str);

return operand1 op operand2 ;

}

2.6 Post�x Expressions

Another form of algebraic expression that is also unambiguous in the sense described above is called a post�x
expression . In post�x, the operator follows immediately after its operands. The table below shows the
pre�x expressions from above with their in�x and post�x equivalences.

Pre�x In�x Post�x

+ab a+b ab+

*+abc (a+b)*c ab+c*

+/ab*-cde (a/b)+((c-d)*e) ab/ cd-e*+

Post�x expressions are used by many calculators. They are also used when a compiler generates assembly
code from higher-level code. A post�x expression over the alphabet of single lowercase letter operands and
the standard operators is de�ned by the following grammar:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Recursion and Problem Solving

Prof. Stewart Weiss

postfix = <identifier>

| <postfix> <postfix> <operator>

operator = + | - | * | \

identifier = a | b | c | ... | x | y | z

Here are a few more examples of post�x expressions and their equivalent in�x expressions:

Post�x Equivalent In�x

a b + c * (a + b) * c

a b c d e - - - - a - (b - (c - (d - e)))

a b * c d * e f * + - (a * b)- ((c * d) + (e * f))

Like the pre�x grammar, this leads to recursive algorithms for recognizing and for evaluating post�x ex-
pressions. When we cover stacks, we will see non-recursive algorithms developed using stacks that evaluate
post�x expressions and convert in�x to post�x.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

http://creativecommons.org/licenses/by-sa/4.0/

	1 Problem Solving and Backtracking
	1.1 Backtracking and Recursion

	2 Recursion in the Definition of Languages
	2.1 Grammars
	2.2 Syntax of Grammars.
	2.3 Genetics
	2.4 Infix Expressions
	2.5 Prefix Expressions
	2.5.1 Recognizing Prefix Expressions
	2.5.2 Evaluating Prefix Expressions

	2.6 Postfix Expressions

