
CSci 493.65 Parallel Computing
Programming Requirements (rev. January 18, 2024)

Prof. Stewart Weiss

Programming Requirements and Guidelines
Every major project has its own coding requirements and style guidelines, which are conventions about how
to write code for that project. It is much easier to understand a large codebase when all of the code in it
is in a consistent style. Many organizations, such as Google1, require that all of the code written for its
projects conform to these guidelines. In this course, you must write your programs so that they conform to
several requirements. Some requirements are related to how and what to submit; others have to do with the
form of the code.

The requirements stated in this document are implicitly part of every programming assignment
and must be satisfied by your solution to that assignment. They are arranged by category.

1 Requirements

1.1 Submission, Correctness, and Authenticity

1. The submitted program must be free of all errors when it is compiled, linked, and executed on any of
the department’s cslabXX computers. These are the machines in the departmental labs that are named
cslab1, cslab2, and so on. All of these machines have identical architectures and software, so if a
program runs correctly on one, it will run correctly on any other2. In general, a program’s behavior on
one computer may be different than on another because of differences in the installed program libraries,
compilers, and the operating system kernels. This requirement stipulates that it must run correctly on
these lab machines regardless of what it does on any other computer.

2. Every program must be correct to receive full credit . "Correct" means that for every possible
input, it produces output that is consistent with the specified requirements. If the program produces
correct results for some, but not all, inputs, it is not correct. Since there may be an unbounded number
of possible inputs, you cannot possibly establish your program’s correctness by running it on all inputs.
You must use a combination of sampling (i.e., testing) and logical analysis to convince yourself of its
correctness. A very common mistake is for a student to hand in a program that does not even run
correctly on the input file distributed by the instructor. In other words, the student failed to check
the outputs of the program before submitting it. It is also very common to make a “small” last-minute
change to a program and fail to re-test the program on all inputs, only to learn later that the change
“broke” the program completely. Test the exact version that you submit!

3. You must submit all of the source code and absolutely nothing else, unless the assignment states
otherwise. Do not submit any executable code, data files, or output files.

4. For full credit, a program must be submitted in the manner described in the assignment by the stated
due date. Whether or not it is accepted after the deadline, and if so, how much it will be penalized
for lateness, is a rule that will vary from one course to another; whatever is stated in that course’s
syllabus is the determining rule.

5. The program must be your work, and your work alone. You are not free to share solutions or parts
thereof with anyone else unless this has been explicitly stated by the instructor. If you do not under-
stand what it does or why it works because someone else’s hand is in it, this will be discovered one
way or another. You are forewarned that your instructor might ask you to explain how your program
works and that you should be able to do so without advance preparation. If you cannot explain it,
then it is not “yours”. Representing someone else’s work as your own is plagiarism, and it is a violation
of Hunter College policy. We will file an official complaint against any student who we believe has
committed plagiarism.

1The C++ guidelines for Google can be found here: https://google.github.io/styleguide/cppguide.html
2Unless you are so clever that you have figured out how to make it behave differently depending on which host it is running,

in which case you might have “shot yourself in the foot.”

1

https://google.github.io/styleguide/cppguide.html

CSci 493.65 Parallel Computing
Programming Requirements (rev. January 18, 2024)

Prof. Stewart Weiss

1.2 Documentation Requirements

Every program must be thoroughly documented. In particular it must satisfy the following
documentation rules:

1. Every distinct source code file must contain a preamble with the file’s title, author, brief purpose and
description, date of creation, and a revision history. It must also contain detailed instructions on how
to build the executable from all of the source code files. If the build instructions require multiple
commands, creating a Makefile and submitting it with the source code is the best possible solution.
The description must be a few sentences long at the minimum. A revision history is a list of brief
sentences describing revisions to the file, with the date and author (you) of the revision. This is an
example of an acceptable file preamble:

/**

Title : draw_stars.c
Author : Stewart Weiss
Created on : April 2, 2023
Description : Draws stars of any size in a window, by dragging the mouse to

define the bounding rectangle of the star
Purpose : Demonstrates drawing with the backing-pixmap method, in which the

application maintains a separate, hidden pixmap that gets drawn
to the drawable only in the expose-event handler. Introduces the
rubber-banding technique as well.

Usage : draw_stars
Press the left mouse button and drag to draw a 5-pointed star

Build with : gcc -o drawing_demo_03 draw_stars.c \
‘pkg-config --cflags --libs gtk+-2.0‘

Modifications: April 29, 2010
Improved efficiency of the algorithm a bit. See the code.

**/

2. All function prototypes in your program must have a prologue containing a description of each pa-
rameter and the return value, if it has one, as well as appropriate pre- and post-conditions. These
prologues must be in the header files (i.e., .h files).

3. Functions that have non-trivial algorithms must be documented in plain English in a multi-line com-
ment block. All non-trivial declarations must have adjoining, brief comments.

4. In general, variable names should be descriptive enough to give a good idea of what the variable is
used for. Sometimes, more comments are required. Example:

char ∗ del im = " \ t " ; /∗ space and tab ∗/
char ∗ token ; /∗ returned token ∗/
i n t number ; /∗ to s t o r e number token ∗/
char err_msg [STRING_MAX] ; /∗ f o r e r r o r messages ∗/
i n t r e s ; /∗ re turn value o f get_int () ∗/

1.3 Style Requirements

1. The names of variables, types, functions, and function parameters, must be all lowercase, with un-
derscores between words, such as line_count or table_size,but not Big_num or lineCount or
LineCount.

2. Use UPPERCASE for all MACROS .

2

CSci 493.65 Parallel Computing
Programming Requirements (rev. January 18, 2024)

Prof. Stewart Weiss

3. Declared constants can follow rule 1 or can use PascalCase, such as const int MaxListSize = 100;

4. Every program must follow commonly accepted stylistic guidelines regarding the use of blank lines,
white space, and indentation. In particular

(a) Each line of text in your code should be at most 80 characters long.

(b) Use only spaces, not tabs, and indent 4 spaces at a time.

(c) When you have a boolean expression that is longer than the standard line length, be consistent
in how you break up the lines. In this example, the logical AND operator is always at the end of
the lines:

if (this_one_thing > this_other_thing &&
a_third_thing == a_fourth_thing &&
yet_another && last_one) {
...

}

1.4 Performance

1. Every program must satisfy specified performance requirements if these are stated. This means that
it uses an amount of storage and running time within specified or reasonable limits.

2 Miscellaneous Guidelines

There is a difference between requirements and guidelines. A requirement must be followed. A guideline is
a suggestion; it is strongly encouraged but does not have to be followed.

1. Programs should avoid error-prone syntax as much as possible. For example, it is better to write the
condition

if (0 == N)

than the condition

if (N == 0)

because of the very common mistake of writing (N = 0) instead. Similarly, one should always
use braces with compound statements such as if’s and while’s, even if they are not necessary, as the
following example demonstrates:

count = N;
while (0 < count) {

a[count--]++;
}

because if you make a habit of doing this, you will not be in the situation where you inadvertently
write this:

count = N;
while (0 < count)

cout << a[count] << endl;
count--;

and waste time trying to figure out why your program is stuck in an infinite loop.

3

CSci 493.65 Parallel Computing
Programming Requirements (rev. January 18, 2024)

Prof. Stewart Weiss

2. The output of any program should be readable and understandable by ordinary human beings who
lack mind-reading capability and who have not read the assignment or the program, unless specified
otherwise. For example, the output

The file “playlist1” contains 6 songs that won Grammies in 2010.

is more understandable than the output

6 songs

or this

playlist1: 6

4

	1 Requirements
	1.1 Submission, Correctness, and Authenticity
	1.2 Documentation Requirements
	1.3 Style Requirements
	1.4 Performance

	2 Miscellaneous Guidelines

