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4.1 Overview

This chapter begins by examining how a program can exercise some control over the connections
that it makes with disk files. It describes the data structures used by the kernel to manage open
files, and explains how processes can interact with these files. It then explores device files and how
they are used and structured, and device drivers and their roles and structures. From there it looks
at block and character device file differences, after which it turns to terminals. The remainder of
the chapter is then devoted to controlling terminals.

4.2 Open Files

The programs that we have studied so far operate on disk files, which are files that reside, of course,
on disk{:]. You are by now well-acquainted with the general model of file I/O: open the file, access
it, and close it. Remember that this model works for any kind of file, not just disk files. Here
though, we are interested only in disk files.

In this model of file I/O, opening a file returns a reference to an object that can be used to access
the file, either for reading or writing. When you use the open() system call, you get a file descriptor
in return; when you use the fopen() C standard I/O library call, you get a FILE pointer in return.
Either way, you are getting a scalar object (i.e., a small integer or a pointer) that is associated with
a hidden (kernel) data structure that allows you to access the file. Here, we will explore how much
control we can exercise over the way in which the program is connected to the file.

When a process opens a disk file using the open() system call, the kernel creates a data structure
that represents the connection between the process and the file. The returned file descriptor can be
used by the process to access the file. A file descriptor is simply an index into a per-process tableE]
that the kernel uses to locate that specific data structure. Different versions of UNIX call this data
structure different things, and the data structure may have slightly different members from one
UNIX variant to another, but the basic members and purpose of the structure are invariant: its
most important member is the file pointer, and its purpose is to store the position in the file from
which the next operation will take place (whether it is a read or a write.)

!This is in contrast to device files, which are very different from disk files.
2A "per-process" table is a table of which each process has its own instance.
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Figure 4.1: Per-process open file table

This data structure is called a file entry in BSD UNIX and a file structure in Linux. I will call it a file
structure in these notes. The connection between a process and a file is completely characterized by
the information contained in the file structure. Aside from the file pointer, the kinds of information
it typically contains include:

e whether or not the file is open for reading, writing, reading and writing, or appending,
e whether or not the I/O is buffered or unbuffered, and

e whether or not the access is exclusive or whether other processes also access the file.

as well as other information that is required by the kernel. The information contained in the file
structure characterizes the connection between the open file and the process; it is specific to this
single connection. Other processes might have this file open with different attributes. Many of the
attributes of the connection can be changed by the process; others cannot. Which can and which
cannot, and how is it done? These are the questions we will answer.

Let us begin by examining all of the data structures related to open files. Each process has a table
that is usually called the open file table. ( In 4.4BSD, this table was called the descriptor table, and
each entry was called a filedesc structure.) In Linux, this table is the £d array, which is part of a
larger structure called the files struct. The file descriptor returned by the open() system call is
actually an index into the open file table of the process making the call. Recall that every process is
given three file descriptors when it is created: 0, 1, and 2, respectively, for standard input, output,
and error. These are the first three indices in this table, as shown in Figure .1

When a process issues the open() system call, the kernel creates a new file structure and fills the
lowest-numbered available slot in the process’s open file table with a pointer to that file structure.
The file structures for all open files are contained in a table called the file structure table. which
resides in the address space of the kernel. See Figure [4.2

The left side of the figure contains the per-process open file tables, one for each process. These
tables, although in the virtual address space of the processes, are accessible only by the kernel. The
right side of the table contains the file structure table, in kernel memory. The gray region at the
bottom is on disk; everything above the gray area is memory-resident. You will notice in the figure
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Figure 4.2: Kernel data structures related to open files.

that some processes’ file descriptors point to the same file structure for the same open file, whereas
others’ descriptors point to separate file structures for the same file. Sometimes processes share a
connection and other times, even though two or more processes may have the same file open, they
access it through different connections. When different processes are connected to the same file
through different file structures, the file pointers are different. When a file structure is shared by
processes, they share the file pointer. You will see in the chapter on process management how these
situations arise.

The file structures in the file structure table point to the active i-nodes for the open files. These
i-nodes are maintained in the active i-node table in kernel memory. The active i-node table contains
copies of the i-nodes on disk. If the i-nodes change in memory, the changes are written to the i-nodes
on disk.

4.2.1 Using fcntl() to Control File Descriptor Attributes

The file structure contains a set of flags that control I/O with respect to the file. These flags are
called file status flags, and they are shared by all processes that share that file structure. The file
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descriptor is the means by which the process can modify those flags and alter the behavior of that
connection to the file. The method of modifying the flags of an existing file structure is a three-step
procedure:

1. The process gets a copy of the current attributes of the connection from the kernel, storing it
in its own address space;

2. The process modifies the current attributes in its copy;

3. The process requests the kernel to write its copy back to the kernel’s in-memory structures.

The system call that performs steps 1 and 3 is the fcntl() call. You can pronounce fcntl as "f
control", short for file control. fcntl() is a function that operates on open files. Depending upon
its arguments, fcntl() will either get the attributes of a file connection or set them. It has a very
long man page that starts as follows:

NAME
fcntl — manipulate file descriptor
SYNOPSIS
#include <unistd.h>
#include <fcntl.h>
int fentl(int fd, int cmd, ... /% arg %/ );
DESCRIPTION
fecntl performs one of various miscellaneous operations
on fd. The operation in question is determined by cmd.
Remarks

e The first parameter is the file descriptor of an already open file.

e The second parameter is an integer that fcntl() interprets as a command. Names for these
integers are defined in <fcntl.h>; the names that are relevant to getting or setting file status
flags are:

— F_GETFL which tells fcntl() to return a copy of the set of flags;

— F_SETFL which tells fcntl() to expect a third integer parameter that contains a new
flag set to replace the current one.

Some of the other commands that fcntl() can perform include

— F_DUPFD which duplicates an existing file descriptor
— F_GETFD, F_SETFD which get and set file descriptor flags (see below)
— F_GETOWN, F_SETOWN which get and set the ownership of the SIGIO signal (see below)
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— F_GETSIG, F_SETSIG which get and set the signal that is sent when using asynchronous
I/0

— F_GETLK, F_SETLK, F_SETLKW which acquire, release, and test for the existence of record
locks.

e Each control flag is a single bit in a long integer. To turn on an attribute, you need to set
the bit. To turn it off, you need to zero it. The <fcntl.h> header file contains definitions of
masks that can be used for this purpose. To set a bit, you can do a bitwise-or of the particular
mask with the flag variable; to unset it, you can do a bitwise-and of the complement of the
magk with the control flag variable. The masks are defined in /usr/include/bits/fcntl.h,
which is included in the <fcntl.h> header file. They are also defined in the man page for
<fcntl.h>.

File status flags reside in the file structure, which may be shared by multiple processes. File
descriptor flags are part of the entry in a process’s open file table and are associated with the actual
file descriptor. At present there is only one such flag, FD_CLOEXEC, the close-on-exec flag. This flag
is not relevant to anything that we cover in this chapter. The F_GETOWN and F_SETOWN commands
will be explained when we cover asynchronous I/0O, and we ignore them for now.

Similarly, commands related to record locking ( F_GETLK, F_SETLK, F_SETLKW ) will be covered when
we turn to the topic of file sharing.

Not all file status flags can be changed after a file is opened. For example, if a file is opened for
writing with the 0_WRONLY flag, you cannot use fcntl() to change its access mode to reading. The
flags that can be changed after a file has already been opened are a subset of the file status flags.
The most important of them, and their mnemonic masks are:

O_APPEND Append mode. Before each write() operation, the file pointer is positioned at the end
of the file, as if with 1seek(), atomically. This may not work on remotely mounted file
systems. Setting 0_APPEND is done to eliminate race conditions.

O_ASYNC  Asynchronous writes. Generate a signal when input or output becomes possible on
this file descriptor. This feature is only available for terminals, pseudo-terminals, and
sockets, not for disk files!

0_NONBLOCK or 0_NDELAY Non-blocking mode. No subsequent operations on the file descriptor will
cause the calling process to wait. This is strictly for FIFOs (also known as named
pipes) and may not have any effect on files other than FIFOs. POSIX specifies the mask
0_NONBLOCK, but some systems expect O_NDELAY instead. Many systems patch their
header files so that they are the same. In Linux 0_NONBLOCK may not be equivalent to
O_NDELAY. Check the man page for your system.

0_SYNC Synchronous I/0O. Any writes on the file descriptor will block the calling process until
the data has been physically written to the underlying hardware. In Linux this attribute
cannot usually be modified by fcntl(), and it may or may not be implemented.

From the above descriptions. you can see that there is little that we can actually do through fentl1 ()
in Linux for disk files. The 0_ASYNC flag will be important when we study terminal connections.
The 0_NONBLOCK flag often has no effect. The 0_APPEND flag is useful, and this is one we will explore.
The 0_SYNC flag turns on synchronous writing. Synchronous writing is writing in which the process
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is blocked until the data is actually written to the device, rather than to the kernel buffers. In other
words, it turns off kernel buffering for this connection. There are very few reasons why a process
should want to do this, as it slows down its execution significantly. If a process wants to force disk
writes, it can always use fsync() periodically.

Remember that, in order to modify either the file descriptor flags or the file status flags, you cannot
just issue an F_SETFD or an F_SETFL command through fcntl (), as this could turn off flag bits that
were previously set. Instead you have to follow the three-step procedure outlined above. A typical
code sequence to set a flag such as 0_APPEND, given that fd is the file descriptor of a file that is
open for writing, is

int flags, result;
flags = fcntl(fd, F_GETFL);
flags |= (O_APPEND);
result = fentl( fd, F_SETFL, flags );
if ( =1 == result )

perror ("Error setting O APPEND")
return 0;

Notice that the mask is bitwise-or-ed with the flag variable. To turn off a bit, you would bitwise-and
the complement of the mask, as in the sequence:

int flags, result;
flags = fcntl(fd, F_GETFL);
flags &= ~(O_APPEND);
result = fentl( fd, F_SETFL, flags );
if ( =1 == result )
perror ("Error unsetting O _APPEND");
return 0;

Although we are limited in which flags we can set in Linux for disk files, we can use fentl() to
check the values of all flags. The following function demonstrates how to check the state of various
flags. The function requires inclusion of the <fcntl.h> header file. The macro 0_ACCMODE is a mask
that can be used to check which of O_WRONLY, O_RDONLY, or O_RDWR is set. These values are stored
in the low-order two bits of the integer flagset returned by fcntl() and are defined below. These
are not independent bits, which is why you need the two-bit mask.

#define 0_ACCMODE 0003
#define O0_RDONLY 00
#define O_WRONLY 01
#define O_RDWR 02

We put these ideas together in a function named check_file_status() which, when given the file
descriptor of an open file, prints its access mode and which status flags are set on that descriptor.
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int check file status ( int fd )

{
int flags = fentl ( fd, F_GETFL );
if ( -1 = flags ) {
perror ( "Could not get flags.");
return ( -1 );
}
switch ( flags & O ACCMODE ) {
case O WRONLY:
printf ("write—only\n");
break ;
case O RDONLY:
printf("read—only\n");
break ;
case O RDWR:
printf("read—write\n");
break ;
}
if ( flags & O _CREAT ) printf ("O_CREAT flag is set\n");
if ( flags & O_EXCL ) printf ("O_EXCL flag is set\n");
if ( flags & O_NOCITY ) printf ("O_NOCITY flag is set\n");
if ( flags & O_TRUNC ) printf ("O_TRUNC flag is set\n");
if ( flags & O _APPEND ) printf ("O_APPEND flag is set\n");
if ( flags & O NONBLOCK ) printf("O _NONBLOCK flag is set\n");
it ( flags & O_NDELAY ) printf ("O_NDELAY flag is set\n");
#if defined (O_SYNC)
if ( flags & O_SYNC ) printf ("O_SYNC flag is set\n");
#endif

#if defined (O _FSYNC)
if ( flags & O _FSYNC ) printf ("O_FSYNC flag is set\n");
#endif
if ( flags & O_ASYNC ) printf ("O_ASYNC flag is set\n");
printf("\n");
return 0;

As 0_SYNC and O_FSYNC are not necessarily defined on all UNIX systems, the tests for these flags
are conditionally compiled. You can embed this function into a main program such as

int main(int argc, char xargv|])

{

int flags , fd;

if ( arge =2 ) {
printf("usage: %s <descriptor#>\n", argv|[0]);
exit (1);

}

if ( ( fd = atoi(argv[1l])) < 0 ) {
printf("usage: %s <descriptor#>\n", argv[0]);
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exit (1);

}
check file status(fd);

return 0;

and run the program redirecting standard input, output and error. In the process you will discover
some surprising results. For example, if the above program is named checkstatus, try to predict
the output of

$ ./checkstatus 1 > outl
$ cat outl

and of

$ ./checkstatus O
$ ./checkstatus 2 2>errs

The point is to determine, when input or output is redirected, how the status flags for the three
standard devices, standard input, output, and error, are changed.

4.2.2 Appending and Race Conditions

The 0_APPEND flag controls append mode. Consider the following problem. A shared log file is used
to record various system activities. Each of several different processes adds its own entry to the end
of the log file to record its activity.

Let us make this concrete. Recall that UNIX uses the wtmp file to record each and every login and
logout. Each login must be recorded at the end of this file when it occurs. When UNIX starts up,
init () creates a getty () process for each terminal, or some other comparable process in the case of
network logins, and when a user logs in at a terminal, the getty() or other similar process spawns
a login() process for that terminal. As a consequence, multiple login() processes might exist at
any time. Imagine that two users login on different terminals at the exact same time. The two
login() processes each have to add an entry to the end of the table. To add an entry to the end
of a file, the file must be opened for writing, using 0_WRONLY, or reading and writing, using 0_RDWR.
Thus, a process that needs to add a record to the end of the file must perform the following steps:

1. Open the file in read/write mode.
2. Seek to the end of the file.

3. Write a login record at the position obtained by the seek.

In terms of system calls, this would look something like the following:
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fd = open(_PATH_WTMP, O_RDWR);

// error check the open() and if successful then
// create the wtmp record to write ... and then
lseek(fd, O, SEEK_END);

write(fd, &record, len);

The 1seek() call obtains the file pointer for the file and sets it to the end of the file at the time the
call is made. This pointer is stored in the file structure for the this process’s connection to the file.
When the process calls write(), the data will be written at the position of this file pointer.

Imagine now that two different processes, identified here as loginl and login2, execute this same
sequence of instructions independently and simultaneously. For simplicity, suppose that they run
on a one-processor machine and they are time-sliced onto the processor. In particular, suppose
the processor executes the following sequence of instructions. The leftmost integer represents the
current time in some fixed time unit. loginl executes instructions in the left column; login2, in
the right.

time loginl login2

0 fd = open(_PATH_WTMP, O_WRONLY);

1 -

5 lseek(fd, O SEEK_END);

6 fd = open(_PATH_WTMP, O_WRONLY);
7 -

10 lseek(fd, O SEEK_END);

11 write(fd, &record, len);

12 write(fd, &record, len);

loginl sets the file pointer at time 5. It is removed from the CPU and login2 sets the file pointer
to the same position as logini did, at time 10. It writes to the file at time 11. Then loginl writes
to the same position, overwriting the data just written by login2; the record written by loginl
replaces the one just written by login2. This is a classic example of a race condition.

Race conditions are removed by using some type of mechanism that will allow a sequence of instruc-
tions to be executed as an atomic operation, which simply means that once the first instruction is
started, no other process can execute any instruction that accesses any of the shared data until the
last instruction is completed. UNIX solves this particular problem by providing write connections
with an optional auto-append mode. When auto-append mode (0_APPEND) is enabled, every write
operation is preceded immediately and atomically by a seek to the end of the file. This guarantees
that each write occurs at the end of the file, regardless of how many other processes are trying to
do the same thing simultaneously. Therefore the login and logout processes simply have to open
the file in auto-append mode, or enable it after the file is opened with fent1 (). The preceding code
would be reduced to the following:

fd = open(_PATH_WTMP, O_WRONLY | O_APPEND);
// create the record to write ...
write(fd, &record, len);
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4.2.3 Controlling the Connection When Opening a File

Rather than using fentl() to adjust the attributes of the connection to a previously opened file,
one can open the file with the desired attributes in the first place. These attributes can be passed
as parameters in the open() system call, by bitwise-or-ing them in the second argument to the call.
For example, to open a file with name foobar with the write-only, auto-append, and synchronous
I/O bits set, you would write

fd = open(foobar, O_WRONLY | O_APPEND | O_SYNC);

You can read the open() man page or the <fcntl.h> header file for a list of the flags that can be
set in the open() call. A file must be opened either read-only, write-only, or read-write. Therefore,
the bitwise-or must always contain ezactly one of 0_RDONLY, O_WRONLY, or O_RDWR. Other flags can
be bitwise-or-ed to it. Which flags are appropriate depend upon the mode in which it is opened. In
general, flags fall into two categories: file creation flags and file status flags.

The file creation flags are 0_NOCTTY, O_TRUNC, O_CREAT, and 0_EXCL. These are only relevant when
the file is opened in a mode that allows writing, either write-only or read-write. Understanding
the 0_NOCTTY flag requires more knowledge of terminals and processes; this will be explained in the
chapter on processes. The semantics of the remaining three are worthy of discussion.

O_CREAT  When no flags are set, if a file is opened for writing and it does not exist, open() will
return -1 and fail. The O_CREAT flag prevents the failure: when it is set, if a file is
opened for writing and it does not exist, open() will create it. The ownership of the file
is determined by the effective userid of the process, and the file’s mode will be whatever
mode is specified in the open() call, with the umask applied. If the file already exists,
this flag has no effect, meaning that the file will be opened with the file pointer set to
the start of the file.

0_EXCL This flag is intended to be used in conjunction with the 0_CREAT flag. If a file is opened
for writing with the 0_CREAT flag by itself, and the file exists already, the contents of the
file can be overwritten, depending on where the writes occur. To prevent this possibility,
the 0_EXCL can be bitwise-or-ed to the flagset. When both 0_CREAT and 0_EXCL are set,
if the file exists, the open will fail. In contrast, if the file does not exist, it will be created
just as if 0_EXCL were not set. If this flag is used without 0_CREAT, the results are the
same as if no flags were set.

O_TRUNC  Without this flag, if a file is opened for writing and it already exists, the contents of the
file are not necessarily destroyed; it depends whether O_APPEND is set and whether the
process seeks to specific places in the file prior to writing. If the program just opens a file
for writing and starts writing without seeking and without appending, the file contents
will be replaced, but opening for writing does not automatically zero the contents of the
file. The purpose of the O0_TRUNC flag is to force the file to be zeroed before any writes.
When it is set, and the open() allows writing and the file exists, the file is truncated to
zero length. This flag will have no effect unless all of these conditions are true. It will
also have no effect if the file is anything but a regular file. If all of 0_TRUNC, O_EXCL,
and O_CREAT are set, 0_EXCL will override this one — if the file exists, open() will fail
and it if does not exist, it will be created.
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The table below summarizes the effects of the possible combinations of these three flags when a file
is opened for writing using the call

open( ““file’’, O_WRONLY | flags );

flags \ If the file exists If the file does not exist
0 opens for writing and sets fails
pointer to first byte
0_CREAT opens for writing and sets creates “file”
pointer to first byte
0_EXCL opens for writing and sets fails
pointer to first byte
0_TRUNC opens for writing and zeroes fails
its contents
0_CREAT | 0_EXCL fails creates “file”
0O_CREAT | O_TRUNC opens for writing and zeroes creates “file”
its contents
O_TRUNC | O_EXCL opens for writing and zeroes fails
its contents
O_CREAT | O_TRUNC | O_EXCL | fails creates “file”

The program wrflagtest.c in the demos directory for Chapter 5 can be used to test the effects of
all combinations of these flags.

4.3 Device Files

Not only is every physical device in a UNIX system associated with a device special file, but every
logical device is as well. Logical devices are devices that exist as abstractions of real physical
devicesﬂ Although UNIX does not require this, it has been the convention that all of the device
files are located in the /dev directory.

4.3.1 Naming and Organizing Device Files

Different versions of UNIX use different methods of organizing and naming device files. For example,
under Solaris 9, you will find that almost all of the terminal files contained there are symbolic links
to files in the directory /devices/pseudo, and that the targets of these symbolic links have names
such as pts@0:2.

In contrast, in Linux 2.6, instead of a /devices/pseudo directory there is a directory /dev/pts,
and all of the device files within /dev/pts have small numbers such as 1,2,3, ... that correspond to
the terminals of active connectionsl

3Sometimes, for example, there may be more than one name for a given physical device, such as a port or a disk.
A logical device is another name for that device.

1At installation time, Linux can be configured so that its support of pseudo terminal devices is the same as that
of systems such as Solaris 9 by using the CONFIG_UNIX98_PTYS and CONFIG_DEVPTS_FS flags. The Unix98 standard
specifies how /dev/pts is used for pseudo-terminal support.
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Hard disks are represented by device files as well. Their names vary from one system to another.
In Linux, the names may look like /dev/hdla or /dev/hd2c. If the hard disks are attached via a
SCSI or SATA bus, then their device files may have names such as /dev/sdal. In Solaris 9, on the
other hand, /dev/dsk/c0t3d0s5 would be a device file for a file system attached to Controller 0
("c0"), at target position 3 ("t3") for that controller, on logical unit 0 ("d0") since that controller
may have several identical units differing only by number, and in partition or "slice" 5 ("s5") on
that disk. Thus, the device file name reveals much information about the device.

4.3.2 Accessing Devices Via Device Files

All device files support the pertinent system calls. For example, a device such as a magnetic tape
that can be read and written will have a device file whose name might be /dev/rst0 and which
will support the open(), read(), write(), 1lseek(), and close() system calls. Input-only devices
such as mice and keyboards will not support write() or 1seek() since it would make no sense, and
similar common sense reasoning applies to all devices in general.

In previous chapters you saw how you could access your terminal using its device file. For example,
to write a message to the terminal device /dev/pts/4 you would write:

$echo "Where are you?" > /dev/pts/4

If you had permission to write to this terminal, the message "Where are you?" would appear on
the screen in the corresponding terminal window.

If you do not know the name of the device file for the terminal in which your shell is running, the
shell command tty will provide it to you. tty displays on standard output the absolute pathname
of the device file representing the terminal from which the command is issued:

$ tty
/dev/pts/4

At the programming level, the library function ttyname() serves the same purpose, returning the
full pathname of the terminal device whose file descriptor is passed to it.

NAME
ttyname — find pathname of a terminal
SYNOPSIS
#include <unistd.h>
char xttyname(int fd);
DESCRIPTION
The function ttyname() returns a pointer to the null—
terminated pathname of the terminal device that is open on
the file descriptor fd, or NULL on error (for example, if
fd is not connected to a terminal). The return value may
point to static data whose content is overwritten by the
next call.
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To find the name of the terminal device connected to standard input, for instance, a program
can call ttyname(0), The following program prints the name of its control termmalﬂ The macro
STDIN_FILENO is defined in <unistd.h> and is simply the number 0.

#include <stdio .h>
#include <unistd.h>
int main()

{
printf (" Terminal is %s\n", ttyname(STDIN FILENO));

return 0;
If you name this program show_tty and run it, you will see something like:

$ show_tty
Terminal is /dev/pts/2

On the other hand, try running it as follows:
$ 1s | show_tty

and you will see
Terminal is (null)

The problem is that in the second example, standard input was redirected, so file descriptor 0
was attached to a pipe instead. The ttyname() function returns the NULL string when there is
no terminal attached to the descriptor. The same thing will happen if you try calling it with file
descriptor 1 while standard output has been redirected. You can therefore use ttyname (0) as a test
for whether or not standard input or output is redirected , as in

if ( ttyname(0) )

// not redirected
else

// is redirected

There is a function specifically for testing whether a file descriptor is attached to a terminal or not

5The control terminal for a process is the terminal device from which keyboard-related signals may be generated.
For example, if the user presses a Ctrl-C or Ctrl-D on terminal /dev/pts/2, all processes that have /dev/pts/2 as
their control terminal will receive this signal.
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NAME

isatty — does this descriptor refer to a terminal

SYNOPSIS
#include <unistd.h>
int isatty(int desc);

DESCRIPTION
returns 1 if desc is an open descriptor connected to a
terminal and 0 otherwise.

The isatty() function is useful for testing descriptors in this way. We can use it together with
ttyname () as follows.

#include <stdio.h>
#include <unistd.h>

int main()
{
if (isatty (0))
printf("%s\n", ttyname (0));
else
printf("not a terminal\n");
return 0;

If you run this program you will see something like

$ mytty
/dev/pts/1

and when input is redirected, you will see this:

$ 1s | mytty
not a terminal

When you are writing a program that expects the standard output device to be a terminal, you
can use either isatty() or ttyname() to check whether any standard stream has been redirected.
However, both of these functions can only be used with an open file, since they need a file descriptor,
and file descriptors exist only for open connections. In contrast, the ctermid () standard I/0O library
function will always display the pathname of the controlling terminal.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 14
ShareAlike 4.0 International License.


http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 4 Control of Disk and Terminal 1/0

NAME
ctermid — generate path name for controlling terminal
SYNOPSIS
#include <stdio .h>
char sctermid (char xs);
DESCRIPTION
The ctermid () function generates the path name of the
controlling terminal for the current process and stores it
in a string. If s is a null pointer, the string is stored
in an internal static area whose address is returned and
whose contents are overwritten at the next call to ctermid ().

BUGS
The path returned may not uniquely identify the controlling
terminal; it may, for example, be /dev/tty.

The problem is that on Linux, it will only display /dev/tty, just as the man page’s BUGS section
notes, so if the program needs the actual filename, using ctermid() is not the solution. It does
work correctly in Solaris 9.

4.3.3 Device Drivers and the /dev Directory

Device files provide an interface between processes and devices. They are like regular files in the
following ways: they have a mode, they have owners and groups, times of access, modification,
and status change, and they have names and links to them. But they differ in one significant way.
Unlike disk files, they are not storage containers; rather than storing data, they provide access to
the entry points of functions. Because they are not containers, they do not have size. Because they
are really just interfaces, they are associated with executable code that manages a connection to a
device.

The code that manages the connection between a process and a device is inside a device driver.
A device driver is a program that provides an interface between a device and the processes that
communicate with it. Device files are the means in UNIX for a process to communicate with device
drivers.

If you type 1s -1 in the /dev directory, you will see output such as this:

total 0

crw-rw---- 1 root root 4, 0O Feb 6 11:07 ttyO0

Crw------- 1 root root 4, 1 Feb 6 16:09 ttyl

crw-rw---- 1 root tty 4, 10 Feb 6 11:07 ttyl0
crw-rw---- 1 root tty 4, 11 Feb 6 11:07 ttyll
crw-rw---- 1 root tty 4, 12 Feb 6 11:07 ttyl2
crw-rw---- 1 root tty 4, 13 Feb 6 11:07 ttyl3
crw-rw---- 1 root tty 4, 14 Feb 6 11:07 ttyl4d

If you type 1s -1 in the /dev/pts directory, you will see something like this:
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---- 1 root tty 136, 1 Oct 14 14:46 1
---- 1 1lsmarque tty 136, 10 Sep 12 13:13 10
---- 1 1lsmarque tty 136, 11 Sep 12 18:39 11
---- 1 chays tty 136, 12 Sep 13 20:02 12
---- 1 chays tty 136, 13 Sep 13 20:02 13

(9]
H
=
|
|
S = = 5 = g 5 = 5

Crw--w---- 1 lsmarque tty 136, 14 Oct 3 13:22 14
CTrW--W---- 1 lsmarque tty 136, 15 Sep 12 13:13 15
CrW-—-w---- 1 shixon  tty 136, 19 Oct 14 15:19 19
Crw--w---- 1 sweiss  tty 136, 20 Oct 14 15:23 20

Notice that the first line, which always reports the total number of blocks used by the files in the
directory, shows that these files do not use any storage.

Next observe that the type designator of each file listed above is 'c’, which represents the type
character special file. The ¢ indicates that this is a character device, as opposed to a block device.
Every I/0 device is accessed through either a block I/O interface or a character I/O interface. One
major difference between them is that block I/O uses kernel buffering whereas character I/O does
not. When a character I/O interface is used, the data flows in a character stream between the
device and connected processes without using system buffers. In contrast, block devices use the
kernel buffering system and transfer large chunks of data at a time. Some devices, such as disk
partitions, may be accessed in block or character mode. Because each device file corresponds to a
single access mode, devices that have more than one access mode have more than one device file.

Recall that the write command lets one user write to the terminal of another user, provided that
the group write bit is set on the recipient’s pseudo-terminal device file. As a warm-up exercise, we
will eventually write an implementation of write. First we will examine how device drivers work.

Notice in the listings of the /dev and /dev/pts directories that the size field consists of a pair of
numbers. The first number is called the major device number and the second, the minor device
number. For example, /dev/pts/12 has major device number 136 and minor device number 12.
The major device number identifies the type of device, e.g., SCSI disk, pseudo-terminal, or mouse;
the minor device number specifies which particular instance of this type of device is represented by
the file, or the action associated with this particular interface to the device.

Each major device number is an index into the block or character device table maintained in the
kernel. This table is used by the kernel to access the device drivers. Basically the table contains the
address inside the kernel of the entry point into the device driver code. When a system call such as
read () is invoked and the file descriptor passed to the read () system call is the file descriptor of a
device file, the read() code ( inside the kernel) finds the i-node belonging to that descriptor. The
i-node contains the type of the file, which will indicate that it is a device special file, and whether it
is block or character. The kernel will look up the major and minor device numbers from inside the
i-node. It will then use the major device number to locate the device driver code for the particular
kind of device. For example, if the device file has major number 136 and is a character device file, it
will search the character device table for index 136. An attempt to access /dev/pts/12 with major
number 136 and minor number 12 will therefore result in execution of the driver whose index is
136@ There is usually a file in the file system that contains the mapping of major and minor device

5This is true in BSD and SunOs at least. In the Ext2 file system of Linux, there is more indirection, and the code
that is executed might reside in a separate module. The device drivers are not necessarily part of a large executable
image, but are instead in separate executable files, more like Windows, and the kernel contains stubs that are resolved
dynamically at the time of the call, depending upon the type of file system on which the i-node resides.
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numbers to devices. On many Linux systems, you can often find this mapping at

/usr/share/doc/kernel-doc-<kernel-version>/Documentation/devices.txt
where <kernel-version> is to be replaced by the version number, such as 2.6.9, as in
/usr/share/doc/kernel-doc-2.6.9/Documentation/devices.txt

If it is not there, then you can read the file /proc/devices, which contains the major device numbers
for the various groups of devices.

Every I/O device with the same major device number uses the same driver. The minor device
number is passed as a parameter to the device driver. The driver may use this number to select
which unit of the device to use. Notice, for instance, that each of the pseudo-terminals in use in the
above listing has the same major device number, 136, and a minor device number that corresponds
to the name of the device file. As another example, if there are multiple disks, the minor device
number would specify which disk is being accessed.

Sometimes the minor device number is used to distinguish different actions for the device to take.
It is up to the device driver to decide how it will use the minor device number. The use of device
numbers as indices into an array of drivers simplifies the customization of each system for the
particular hardware configuration.

The device drivers in BSD UNIX, like the kernel itself, are divided into three sections:

1. Initialization and configuration routines
2. Routines to handle 1/0 service requests (upper half of the driver)

3. Interrupt service routines (lower half of the driver)

The lower half runs in an uninterruptible mode. The upper half runs synchronously and can block
itself. They communicate through work queues. In Linux, although the terms "upper half" and
"lower half" are not used explicitly, the device drivers work in a similar way. Sometimes they are
called "master" and "slave" drivers.

4.3.4 Disk Drivers

An especially important group of drivers are the disk drivers. A disk driver is a software module
that manages and controls the I/O that passes between a disk file and processes that have requested
1/O to or from that file. This section briefly describes the role of disk drivers in handling I/0.

The purpose of a disk driver is to process requests for disk I/O. These requests are represented by
transaction records, each of which consists of

1. a flag indicating whether to read or write data,
2. a primary memory address,

3. a secondary memory address, and
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4. a count of the number of bytes to transfer.

The driver maintains these records in a queue. An 1/0 request causes the upper half of the driver
to run. When the upper half is entered, it creates a transaction record and puts it into its work
queue. It usually sorts the requests to reduce the latency for the particular device. (This is device
dependent code designed to minimize seek time to particular cylinders. In 4.4BSD, for example,
the elevator algorithm is used to sort the requests.)

When an I/O request has been satisfied or some other event occurs that warrants intervention by
the kernel, the disk sends an interrupt to the processor. The interrupt service routine handles these
interrupts; after saving the appropriate portion of the processor state, if the event was an 1/0
completion, it searches the queue to find the transaction that was completed, de-queues it, changes
the state of the requesting process to indicate that it is no longer blocked on that 1/0, and selects
the next record to service.

Disk drivers are general enough that they can implement block I/O devices, character I/O devices,
and swapping devices. To implement block I/O, the block I/O interface passes the address of a
system buffer in field (2). To implement character I/O, the character I/O interface passes in field
(2) an address that is in the user area, and it ensures that the process is not swapped out during the
transfer. To implement a swapping device, the driver is tailored to make requests to the swapping
device’s controller.

4.3.5 Pseudo-Terminals

A terminal is a hardware device that emulates the old Teletype machines. Up until the early 1980’s,
most users connected to a mainframe computer through terminals. The terminals were connected to
the computer via RS-232 lines, into terminal multiplezers, which were special-purpose devices that
multiplexed multiple terminal lines into the computexﬂ. The computer had device drivers whose role
was to communicate with these multiplexed terminals. The terminal driver had to control all aspects
of the communication path, including modem control, hardware flow control, echoing of characters,
buffering of characters, and so on. When microprocessors were invented and personal computers
became affordable, personal computers replaced terminals as the front ends to mainframes. Special
terminal emulation software could be installed on a personal computer to make it appear to be a
"dumb terminal” to the mainframe. One of the earliest such programs was Kermit, developed at
Columbia University. Terminal emulation software interposed a terminal interface between the user
on his or her local computer and a remote computer on a local area network or the Internet.

Whether you are working on a Linux machine or some other UNIX system locally or remotely
via some remote login facility such as Telnet or SSH, if you are using the traditional command-
line interface to UNIX, you are using a pseudo-terminal. A pseudo-terminal is a software-emulated
terminal. When you open a terminal window in a desktop environment such as Gnome or KDE, you
are using a pseudo-terminal. When you connect via an SSH client you are using a pseudo-terminal.
The device files in the /dev directory that have names of the form pts* or pty* are pseudo-terminal
device files. The device drivers for these files manage pseudo-terminals. Pseudo-terminals and how
they work are described in more detail later.

"Terminals were just one of a class of devices called serial devices. RS-232 lines were serial lines, on which
characters were sent one bit at a time. Modern UNIX systems, including Linux, continue to support many different
types of serial lines.
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4.3.6 Character I/O Interfaces

Almost all I/O devices have a character 1/0 interface, even if they are block devices. For example,
the hard disk has a character interface to allow reads and writes of unstructured byte streams.
The character interface is needed for programs such as fsck, which performs checks of file system
integrity. The character interface translates these requests into block requests for the hardware
but presents a character stream to the client. Printers, and modems have character interfaces, and
these would have entries such as /dev/tty0Oa, /dev/1p0, /dev/cual. Even physical memory has a
character interface to allow memory to be treated like a RAM file. The device file for memory is
/dev/mem.

The character I/O interface to block devices such as disks or tapes is called the raw interface because
it allows access to the device and ignores its structure. A disk partition such as sdal may have
two device files in /dev: the block interface and the character interface. The block interface is
usually /dev/sdal in Linux but because individual partitions do not have character interfaces and
only disks do, the character interface will be the "SCSI generic" device /dev/sgl. The sg interface
allows byte by byte access to the entire drive. In Solaris 9, raw device names are of the form
/dev/rdsk/c0t3d0sb.

Character device drivers do not use system buffers, except for terminal drivers, which use a linked
list of very small (typically 64 byte) buffers. Character device drivers transfer characters directly to
or from the user process’s virtual address space. Because the transfers are directly to user memory
and use DMA, the drivers must lock the memory to prevent the physical pages from being replaced
during the transfer.

4.3.7 Other Character Devices

Some devices have character interfaces even though they do not fit the byte stream model of 1/0.
An example is a high-speed graphics display, which has such a fast transfer rate that it requires
buffers in its own address space to handle the volume of data. These devices would swamp a driver
that passed one character at a time, and are handled as special cases in the kernel.

4.3.8 Writing to a Device File

As an exercise in writing to a device file, we will write our own, somewhat simplified, version of the
write command. The write command writes messages to terminals. The write man page begins

as follows:
NAME
write — write to another user
SYNOPSIS
write user [ terminal |
DESCRIPTION

Write allows you to communicate with other users, by copying
lines from your terminal to theirs.
When you run the write command, the user you are writing to gets
a message of the form:

Message from yourname@yourhost on yourtty at hh:mm...
Any further lines you enter will be copied to the specified
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user ’s terminal. If the other user wants to reply, they must run
write as well.

When you are done, type an end—of—file or interrupt character.
The other user will see the message EOF indicating that the
conversation is over.

If the user you want to write to is logged in on more than one
terminal , you can specify which terminal to write to by
specifying the terminal name as the second operand to the write
command. Alternatively , you can let write select one of the
terminals — it will pick the one with the shortest idle time.
This is so that if the user is logged in at work and also dialed
up from home, the message will go to the right place.

Our first version of write will ignore the optional line argument and will not try to pick the terminal
with the smallest idle time. The main program follows. It calls two functions, get_user_tty() and
create_message (), which follow thereafter.

int main( int argc, char xargv|[] )

{

int fd ;
char buf [ BUFSIZ | ;
char xuser tty;

char eof [| = "EOF\n";

if ( arge < 2 ){
fprintf(stderr ,"usage: writel username\n");
exit (1);

}

if ( ( user tty = get user tty( argv|[l] ) ) = NULL ) {
fprintf(stderr, "User %s is not logged in.\n", argv|[l]);
return 1;

}

sprintf(buf, "/dev/%s", user tty);
fd = open( buf, O WRONLY );
if ((fd = -1 ){
perror (buf); exit (1);
¥

create message (buf);

if ( write(fd, buf, strlen(buf)) = -1 ) {
perror ("write");
close (fd);
exit (1);
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while ( fgets (buf, BUFSIZ, stdin) != NULL )

if ( write(fd, buf, strlen(buf)) = —1 )
break ;
write (fd, eof, strlen(eof));
close( fd );
return 0;

The most important part of the main program is the loop. The while-loop looks exactly like a loop
to read from one file and write to another. The only difference is that it is using fgets() instead
of a read () system call, and it "hard-wires" stdin into the code. The fgets() function reads from
any FILE stream until it sees an end-of-line (EOL) or end-of-file (EOF) mark. Therefore, you can
see that reading from the keyboard and writing to a terminal is essentially the same as reading from
one file and writing to another.

The get_user_tty() function searches through the utmp file for entries that match the given login
name, returning a pointer to a static string containing the line. This could have been allocated on
the stack and later freed, but for demonstration purposes, this is easier.

char * get user tty( char xlogname )

{
static struct utmp utrec;
int utrec size = sizeof (utrec);
int utmp fd;
int namelen = sizeof( utrec.ut name );
char xretval = NULL ;
if ( (utmp_ fd = open( UTMP_FILE, O RDONLY )) =— -1 )
return NULL;
while ( read( utmp_ fd, &utrec, utrec_size) = utrec_size )
if ( strncmp (logname, utrec.ut name, namelen ) =— 0 ) {
retval = utrec.ut line ;
break ;
}
close (utmp fd);
return retval;
}

The create_message () function constructs the message to display on the user’s console. It uses the
getlogin() function to get the real username of the owner of the calling process, the gethostname ()
function to get the hostname of the host on which the sender process is running, the ttyname ()
function to get the terminal device name of the controlling terminal of the sending process, and the
time () function to get the current time, which it converts to a struct tm using localtime ().

void create message (char buf[] )

{

char xsender tty, =sender name;
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char sender host[256];
time t now;
struct tm xtimeval;

sender name = getlogin ();

sender tty = ttyname (STDIN FILENO);

gethostname (sender_host, 256);

time(&now ) ;

timeval = localtime (&now);

sprintf (buf, "Message from %s@%s on %s at %2d:%02d:%02d ...\n",
sender name, sender host, 5+sender tty,
timeval—tm hour, timeval—>tm min, timeval—>tm sec);

This version is relatively easy to construct. The next version must allow the user to enter a terminal
device name in the form "pts/n" and try to open that specific terminal for writing, if possible. If it
fails it must return an error message. The changes to allow the optional terminal name are minor:

1. The main program has to check the command line arguments (not shown below).

2. The get_user_tty() function needs a second argument that it compares to the ut_line field
whenever the ut_name field matches.

char % get user tty( char xlogname, char xtermname )

{

static struct utmp utrec;

int utrec size = sizeof (utrec);

int utmp fd;

int namelen = sizeof( utrec.ut name );

char xretval = NULL ;

if ( (utmp fd = open( UTMP_FILE, O RDONLY )) =— —1 )
return NULL;

/* look for a line where the user is logged in =/
while ( read( utmp fd, &utrec, utrec size) = utrec size)
if ( strncmp(logname, utrec.ut name, namelen ) =— 0 )
if (( termname —— NULL ) ||
( strncmp (termname, utrec.ut line,
strlen (termname)) =— 0 ))

retval = utrec.ut line ;
break ;

}

close (utmp fd);
return retval;

t

This version of the write command still does not choose the terminal line with the smallest idle
time, for a given username, when the terminal line is not specified. How would you go about finding
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the terminal line that has been idle the least amount of time? (Hint: the least idle terminal line
has been accessed most recently.)

In addition, if you experiment with the real write command, you will discover that this version is
still lacking other functionality:

e It does not check that the sender’s terminal does not have I/O redirected.

e It does not check whether the sender’s messaging is turned on (which it must be for the write
program to write back to it.)

e [t does not check whether the receiver is actually logged in, and whether messaging is enabled
on the receiver’s line.

e [t does not check whether the sender is trying to send to him or herself.

Although none of these checks are difficult, and this program is easy to write, in general, com-
municating through the terminal interface is much more complicated than this; remember that we
failed to write a good version of the more command because we could not suppress echoing, we had
trouble getting input accepted without the Enter key press, and we did not suppress the scrolling
of the prompt.

4.4 Terminals and Terminal I/0

Terminal 1/0 is probably the messiest and most disorganized part of any operating system. This
is partly due to the way that I/O interfaces have developed over the years, in an ad hoc fashion,
responding to changes in hardware and user demands, partly due to the wide variety of 1/0O devices
that have to be accommodated under the aegis of a single 1/O system, and partly due to the general
lack of standards that governed how terminal I/O should be handled.

In UNIX, part of the problem is the result of the rift between the BSD versions and System V versions
of the operating system, which had very different sets of terminal I/O routines. The POSIX standard
provided a unification of the two sets of interfaces, and modern systems provide POSIX compliant
routines. However, there are still many parts of the I/O interface that are platform-specific.

If you understand how terminals work, then you will have a better understanding of which routines
you need to use to achieve various objectives as well as how to use those routines. The kinds of
questions that will be answered here include:

e Why is it that we have to press the Enter key in order for the typed characters to be received
by a program, and is there a way to avoid this?

e Some program suppress the echoing of characters as they are typed. How can we do this?
e Some programs are able to time-out while waiting for user input. How does that happen?

e Some programs, such as vi and emacs, override the meaning of various control sequences such
as Ctrl-D and Ctrl-C. How can we do that?

e Terminals have a fixed number of rows and columns. How can a program get that number
dynamically and control how it wraps its output?
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e Why is it that sometimes the backspace key erases characters and sometimes the delete key
does, and sometimes neither does? How does the terminal erase?

Adding to the problem of understanding terminals and terminal I/0O is the fact that the C Standard
I/O Library adds another layer of complexity, including various forms of buffering. We have to
figure out what the terminal does and what the library does.

4.4.1 An Experiment

We begin by rewriting the simple I/O program from Chapter 1 so that it does not use C FILE
streams. This way, whatever we observe is independent of that library’s semantics. Unlike the
simple I/O program there, this uses the kernel’s read () and write() system calls.

Listing copychars.c

#include <string.h>
#include <stdlib.h>
#include <unistd.h>

int main( int argc, char xargv|[] )
{
char inbuf;
char prompt|[] =
"Type any characters followed by the ’Enter’ key.
"Use Ctrl-D to exit.\n";

n

if ( —1 — write(1, prompt, strlen (prompt)) ) {
write (1, "write failed\n", 13);
exit (1);

}

while( read (0, &inbuf, 1) > 0 )
write( 1, &inbuf, 1 );
return 0;

t

Assume this has been compiled into an executable named copychars. The copychars program
reads one character at a time and writes one character at a time until it receives an end-of-file
indication, which is that read() returns 0. If the user types a Ctrl-D, provided that the terminal
has the default settings, the read() on the standard input stream will return 0.

When you run this program you will notice that, even though the main loop reads a single character
and immediately writes that character, nothing gets written on the screen until you press the Enter
key. As we are not using the C Library’s streams, we cannot attribute this behavior to the library’s
buffering. The terminal is responsible for this. Somehow the characters that we type are stored,
but where, and how many can be stored before they are lost?

We could answer these questions by doing a bit of research in the manpages, but this time we will
begin with an experimental answer. We can determine the maximum number of characters that the
terminal buffers by supplying larger and larger sequences of characters before pressing the Enter
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key and counting the number of characters output on the screen to make sure none were lost. We
are not allowed to redirect input to copychars to facilitate this because redirecting input will imply
that the terminal is not involved in supplying characters to the program, so we have to do this
in a more tedious way. We do not have to type the characters one at a time, but can create files
containing the required number of characters on a single line, and if our terminal emulator supports
copy and paste, we can paste them into the terminal window and then press the Enter key. We are
free to redirect output to the wc command to count the number of characters written to standard
output.

We can create a file named a_N containing N consecutive ’a’ characters with the command
$ ( for i in ‘seq 1 1 N¢ ; do echo -n ’a’ ; done ) > a_N

where N is replaced by the desired number. Suppose we create such files of sizes 128, 256, 512,
1024, 2048, 4096, 8192 characters. We can open each file in a text editor, copy the sequence to the
clipboard and paste it into the window after running the command

$ copychars | wc

We will see the following sequence of numbers output by wc

2 13 198
2 13 326
2 13 582
2 13 1094
2 13 2118
2 13 4165
2 13 4165

As you can see, the maximum number of characters reported by wc is 4165. Subtract the length of
the prompt and the following newline, 70 characters, and you see that 4095 characters seems to be
the maximum size of the buffer on the system used for this experiment. We will see shortly that this
number is much larger than the documentation states. Where these characters are stored cannot
be answered experimentally. That question requires some research.

Try one other thing. Run copychars, but this time, use your backspace key to change some of the
characters. When you press the Enter key this time, there is no trace of that backspace character.
It is not part of the stream of characters that the program received. The characters seem to be
stored in the buffer in such a way that we can use editing keys to remove them from the set of
characters delivered to the program.

Before we go further, and as a sort of advance peek at what we are about to do, try running the
program as follows. Type the commands as they appear below:

$ stty -icanon ; copychars

When you are finished observing what happens, type the command
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$ stty icanon

What you should have observed was that the program behaved as the code suggests — that each
time you typed a character, it was immediately echoed on the screen. The stty command allows us
to control terminal characteristics. What we just did in part disabled buffering of input characters
in the terminal. Repeat this and try deleting characters and you will see that editing seems to be
disabled. We will return to this later.

Now we will look at a second example. The following program does use the C Standard I/O Library,
and so we will need to understand how that library confounds the picture, but that will happen a
bit later. In the program below, named listchars.c, getchar() is used to obtain characters typed
on the keyboard and printf () is used to display each character as an actual character (a glyph)
with its character code in the current encoding (ASCII).

#include <stdio.h>
int main(int argc charx argv|[] )

{

int ch;

printf("Type any characters followed by the ’Enter’ key.");
printf (" Use Ctrl-D to exit.\n");

while( ( ch = fgetc(stdin)) != EOF )
printf("char = %c’ code = %03d\n", ch, ch );
return 0;

Notice that ch is declared as an int. This is because fgetc() returns an int rather than a char,
because it returns -1 to indicate EQF. In fact EQOF has the value -1, which means that whatever
variable is assigned the return value must be a signed int. The char type is unsigned, so we
cannot use it. Notice too that printf() will display an integer whose value is a legal character
value as a glyph if the %c format specification is used, and as an integer if the %d format specification
is used, so that printf () can conveniently print the character code and the character itself.

When you run this program you will again see that the program does not display any characters
until the Enter key is pressed. If we build it and name it 1istchars, and run it and type abcde
followed by Enter, and Ctrl-D to quit, we will see the following output:

$ listchars

Type any characters followed by the ’Enter’ key. Use Ctrl-D to exit.
abcde

char = ’a’ code 097
char = ’b’ code = 098
char = ’c¢? code = 099
char = ’d’ code = 100
char = ’e’ code = 101
char =

> code = 010

$
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First, notice that no output took place until the Enter key was pressed. Once again, this means
that the characters that were typed before the Enter key was pressed had to be stored in a buffer.

Second, unlike our copychars program, this lets us see the character codes of the characters that
we enter. It seems that there was a character after the ’e’ but before the ~D, and that this character
caused a new line to appear on the screen and then caused "code = 10" to appear after it. But
we pressed the Enter key after the 'e’. The fact that the second quote is in the first column on the
next line implies that two characters were transmitted: a linefeed, ASCII 10, was transmitted to the
screen to advance output to the next line, and a carriage return, ASCII 13, was transmitted, which
forced the next character to appear in column 1 of that line. The ASCII code that was printed is
decimal 10, which is the linefeed character, also known as newline. Therefore, only one ASCII code
was generated, so even though both a newline and a carriage return were sent to the screen, only
a newline character was seen by the program. Therefore, our pressing the Enter key caused only a
newline code to be sent to the program. Usually, when you type the Enter key, it causes both the
linefeed and the carriage return to be inserted in a document, but here you can see that only the
linefeed is transmitted. ( If you do not remember your ASCII codes, type man ascii for the listing.

)

Third, in the printf () statement, the program sent a "\n" (newline) character to the terminal,
but this seems to cause both a linefeed and a carriage return to be placed on the terminal. The
linefeed character, by definition, should cause the cursor to move down to the next line in the same
"column" on the screen, whereas a carriage return should move the cursor to column one, the left
margin, without moving it down one line. But somehow both things happen even though a single
character is transmitted.

What we can conclude from this is that the terminal driver must be doing some character processing
on the inputs it receives from the keyboard and on the outputs that the processor sends to the display
device. (Remember that the terminal driver is controlling a logical input/output device.) We now
explore what the terminal driver does and how we can control its behavior.

4.4.2 Terminal Devices: An Overview

The preceding experiment showed that the default input mode of a terminal includes assembling the
input into lines, processing various special characters such as backspace, and delivering the input
lines to the process after they have been processed. This mode of operation is called canonical input
mode. Terminals can be operated in various non-canonical input modes as well. In a non-canonical
mode, some part of this processing of input is turned off. Programs like emacs, vi, and less put
the terminal into a non-canonical modd|

The behavior of a terminal device is controlled entirely by a piece of software called a terminal
driver. A terminal driver is not the same thing as a terminal device driver. A terminal driver
consists of two components:

1. a terminal device driver, and

2. a line discipline.

8System 7 and BSD systems supported three different input modes: cooked, raw, and cbreak. POSIX.1 does not
support these, although many systems still provide support for them.
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The terminal device driver is usually a part of the kernel and its main function is to transfer
characters to and from the terminal device; it is the software that talks directly with the hardware
at one end, and the line discipline at the other. The line discipline is the software that does the
processing of input and output. It maintains an input queue and an output queue for the terminal.
The relationship between these queues, the process using the terminal, and the terminal itself,
is illustrated in Figure [£.3] The terminal driver is the sum of the parts in this figure; it is the
combination of line discipline and device driver. Notice that

e When echoing of characters is on, characters are copied from the input queue to the output
queue.

e The size of the input queue is MAX_INPUT. If characters are typed faster than they are removed
for processing, and the queue fills, UNIX systems typically ring the bell character and discard
any extra characters.

In the experiment that we performed with the copychars program, we saw that the in-
put queue was able to store 4095 characters, which would suggest that 4095 is the value of
MAX_INPUT. MAX_INPUT is one of many system limits that are defined in <limits.h>. Its value
can also be obtained by calling pathconf (ttyname(0), _PC_MAX_INPUT) within a program.
If we do either, we will see that MAX_INPUT is 255. The documentation states that MAX_INPUT
may be smaller than the actual value. In fact, the terminal driver is configured to allow 4095
characters to be queued, even though the system limit is 255.

e Even though the output queue is also finite, if a process tries to write to it faster than the
driver can transfer characters to the device, the kernel will simply block the process until the
queue has more room.

The figure does not display all of the data structures used by the line discipline. Another queue is not
shown, the canonical input queue. This is the queue in which input characters are processed when
the terminal is in canonical mode. The canonical processing center is part of the line discipline. The
figure does not show the internal data structure that the line discipline uses to control the terminal.
The kernel provides an interface to access this structure, and UNIX provides a command, stty, to
access and modify the various attributes of the terminal that are stored in this structure. The name
of the interface to this structure, in POSIX.1 compliant systems, is the termios structﬂ.

Almost all of the terminal device characteristics that can be examined and changed are contained
in this termios structure, which is defined in the header file <termios.h>. That structure is a
collection of four flagsets, and an array of character codes:

struct termios {

teflag t ¢ _iflag; /* input flags x/
tcflag _t ¢ _oflag; /* output flags x/
teflag t ¢ cflag; /% control flags =/
tcflag t ¢ lflag; /* local flags x/

cc_t c¢_cc[NCCS]; /+ control characters x/

}s

9In System V, the structure used for controlling terminals was the termio struct, and its header file was the
termio.h file. POSIX added an s’ to the name to distinguish the new structure from theirs. A single ’s’!

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution- 28
ShareAlike 4.0 International License.


http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 

UNIX Lecture Notes Prof. Stewart Weiss
Chapter 4 Control of Disk and Terminal 1/0

next character next character
written by process read by process
front Line Discipline k ------ MAX_INPUT front

cmmmmmm -,
[ ——

if echo is on ' |

output queue |< ' input queue 1
L

.
-~ .
..................................................................................

next character next character
to send to the device read from the device

................................................

Figure 4.3: Terminal data structures

The type tcflag_t is an unsigned integer. The four flagsets are just four integers:

e The input flagset, c_iflag, controls the input of characters by the terminal device driver.
e The output flagset c_oflag, controls the driver output.

e The control flagset c_cflag controls the behavior of asynchronous serial transmission lines
(such as RS-232); it may not have meaning for other kinds of terminal ports (such as pseudo-
terminals).

e The local flagset c_1flag affects the interface between the driver and the user (echo, erase
characters, etc.)

The c_cc array defines the special characters that can be changed. The array elements are of type
unsigned char (cc_t is typedef-ed to unsigned char.)

Figure [.3] shows the relationship between the terminal device and the terminal driver and its
components. When you type on the keyboard, the character codes are transmitted to the device
driver, which in turn passes them to the line discipline, placing them in its input queue. The line
discipline, under the normal circumstances, copies the typed characters into the output queue, to
be displayed on the console as you type. The line discipline is responsible for processing of input,
including processing of special characters. It passes the processed characters to the kernel’s read ()
routinﬂ which passes them to the process that requested the read operation. When a process
issues a write request, the kernel’s write function passes the characters to the line discipline, which
performs any processing that is supposed to be performed, and then puts the characters in the

0Technically, to the sys_read() function, which is the actual function within the kernel, as opposed to read(),
which is a wrapper for it.
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output queue. The device driver retrieves the characters from the front of the queue and displays
them on the console.

Before we explore the termios structure at the programming level, we will look at how we can
change it from the command level.

4.4.3 The stty Command

A user can use the stty command to view and alter terminal characteristics. stty without options
or arguments displays a selection of the current settings of the terminal connected to the shell in
which the command is invoked. Different systems will display different amounts of information. To
see the complete list of terminal settings, use "stty -a". The output will look something like the
following (rearranged and labeled ):

$ stty -a
speed 38400 baud; rows 24; columns 80; line = 0;
cchars: intr = ~C; quit = ~\; erase = ~7; kill = ~U; eof = ~D;

eol = M-"7; eol2 = M-"7; start
rprnt = “R; werase = “W; lnext
min = 1; time = 0;
control flags: -parenb -parodd c¢cs8 -hupcl -cstopb cread
-clocal -crtscts
input flags: -ignbrk -brkint -ignpar -parmrk -inpck -istrip
-inlcr -igncr icrnl ixon -ixoff -iuclc ixany imaxbel
output flags: opost -olcuc -ocrnl onlcr -onocr -onlret -ofill
-ofdel nl0 cr0 tabO bsO vtO ££0
local flags: isig icanon iexten echo echoe echok -echonl -noflsh
-xcase -tostop -echoprt echoctl echoke

“Q; stop = ~°S; susp = “Z;
~V; flush = ~0;

It is important to understand that these settings are associated to the device file for the terminal,
not to the connection between the shell or another process and the terminal. To convince yourself
of this, perform the following experiment. To perform the experiment, we will play with the erase
character. stty can be used to change the erase character used by the terminal, by typing the
following, but don’t do it yet:

$ stty erase x

where x is the character that you wish to use for erasing a single character on the command line.
The default is usually either Ctrl-H or Ctrl-7, denoted “H and ~7 respectively. The backspace key
sometimes generates ~H and the delete key, =7, but not always. This experiment will not work in
all shells, because some of them are designed to allow command line editing. In other words, the
shell itself provides the functionality, overriding the terminal settings. If bash is your shell, then
turn off command line editing by entering a non-editing bash subshell with the command line

$ bash --noediting
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Then check which key is the erase character on your terminal by seeing which one actually erases,
and then type

$ stty -a | egrep -o ’\<erase = ...’
This will produce a line like
erase = °7

Change the erase key to something else. For simplicity, make it the character X’ and then verify
that the change took place as follows:

$ stty erase X
$ stty -a | egrep -o ’\<erase = ...’
erase = X;

Verify that it works by typing some random characters and using the X to erase them. Now invoke
another new shell process by typing "bash --noediting" and then run

$ stty -a

in the new shell. You will see that the erase character is still X. Next, in the new shell, change the
erase character back to the original, or to something else. To make it a control character, you can
type the caret (’~’) followed by the character.

$ stty erase "H
$ stty -a | egrep -o ’\<erase = ...’
erase = “H;

Exit the current shell with the exit command and view the terminal settings again. You will see
that the erase character is the one you set it to be in the shell that you just killed. This proves that
you are really changing the device file settings, not those of the process’s connection to it. It is not
like the connection to a disk file. You can now exit the first bash subshell and check yet again that
in your first shell the erase key is the last one you chose.

Finally note that if you have two different windows open, and one is pseudo-terminal pts/3 and the
other is pts/4, these may have different settings; the settings "stick" to devices (or pseudo-devices
in this case), not processes.

Returning to the details of terminal settings, notice that there are two kinds of variables that are
listed in the output of stty -a: those listed in the form

1. var = value; or var value; and

2. war or -var
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The first type are non-Boolean variables. The second are Boolean. The Booleans are called switches
or flags. 1 prefer the term switch, because they act like switches: a switch prefixed with a minus
sign (-) is off, and a switch that is not prefixed with a minus sign is on. Examples of switches are
echo, inlcr, icanon, and icrnl. To change the value of a switch you type

stty [-lswitch

where switch is replaced by the name of the switch, and the minus sign is present to turn it off,
absent to turn it on. Thus,

$ stty -echo

will turn off echo on the screen. Try it now but remember that to turn it back on you will have
to type "stty echo" without being able to see your typing. An alternative is to open a second
terminal window, and in that window, type w to see the which device files are associated with your
two logins. Suppose that the first terminal, in which you turned off echoing, is /dev/pts/2. Then
in the second terminal, you can type

$ stty --file=/dev/pts/2 echo

and this may turn echo on in the first terminal. (Remember that the tty command will display
your terminal device filename.) In general, the --file option lets you specify an alternate device
file for the stty command, provided you have permission to modify it. It may not always work,
and not all systems support the --file option.

Non-Booleans are displayed in one of two forms

e variable — value;

e variable value;

For example, the line
speed 38400 baud; rows 24; columns 80; line = 0;

means that the baud rate is 38400, the number of rows in the terminal is 24 and the number of
columns is 80. The "line = 0" refers to the line discipline. There are certain predefined combina-
tions of settings that are collectively known as the line discipline. Many of these are derived from
the early UNIX implementations of terminal devices; setting the line discipline to 0 means that the
default behavior is the typical one wanted by most users.

The characteristics of the terminal that can be controlled via the stty command fall into six classes:
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Class Description

Special Characters Characters that are used by the driver to cause specific actions to
take place, such as sending signals to the process, or erasing
characters or words or lines. Special characters include the erase,
werase, and kill characters, as examples. Characters used to send
signals include Ctrl-C, which sends the interrupt signal, and
Ctrl-\, which sends the quit signal. Signals are covered in a later
chapter, but for now it suffices to know that signals such as the
interrupt and quit signal usually terminate the process that receives
them.

Special Settings Variables that control the terminal in general, such as its input and
output speeds and dimensions. These include the rows, cols, min,
and time values. rows and cols are the numbers of rows and
columns in the window. min and time are used when the terminal is
in non-canonical mode to control how characters are returned by
read () calls; these will be discussed later. Many of these variables
do not apply to pseudo-terminals.

Input Settings Operations that process characters coming from the terminal. This
includes changing their case, converting carriage returns to newlines,
and ignoring various characters like breaks and carriage returns.

Output Settings Operations that process characters sent to the terminal. Qutput
operations include replacing tab characters by the appropriate
number of spaces, converting newlines to carriage returns, carriage
returns to newlines, and changing case.

Control Settings Operations that control character representation such as parity and
stop bits, hardware flow control. Several of these do not apply to
pseudo-terminals.

Local Settings Operations that control how the driver stores and processes
characters internally. For example, echo is a local operation, as is
processing erase and line-kill characters.

Combination Settings Combinations of various settings that define modes such as cooked
mode or raw mode.

Input settings start with ’i’ and output settings start with ’o’. One input setting of interest is

icrnl. This is the switch that, when set, causes input carriage returns to be converted to newline
characters. Read it as i for input, cr for carriage return, nl for newline. This switch explains why
the Enter key is converted to a newline character. Try running the following:

$ stty -icrnl ; listchars

and typing 'abc’ followed by Enter then Ctrl-D. The Enter will appear as a "M on the screen. Then
type Ctrl-C to quit the program. You will see that the code listed for the carriage return is now
ASCII 13. You will also see that the word "char" is not displayed on the screen for that line:

abc~Mchar = ’a’ code = 097
char = ’b’ code = 098

char = ’c¢’ code = 099

’> code = 013
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This is because the carriage return character causes the output to start in column 1 but there was
no linefeed, so the output " code 13" is over-writing the "char = ". To prove this, modify the
program to force a newline just before the ’Yc’ in the printf () call. You will see the word "char"
reappear. Restore your settings by typing

$ stty icrnl

The output setting of interest is the onlcr switch. This is what adds a carriage return to each
newline character sent to the terminal. Try turning it off and looking at the output:

$ stty -onlcr ; listchars
[stewart@harpo chapter05]$ stty -onlcr; listchars

Type any characters followed by the ’Enter’ key; Ctrl-D to exit.
abc

har = ’a’ code = 097
char = ’b’ code = 098
char = ’c¢’ code = 099
char

Y code = 010

Notice that each new line starts just below the end of the previous line; there were no carriage
returns inserted into the output stream. To restore your settings, type

$ reset
or

$ stty onlcr

Local settings include whether or not canonical mode and echo are enabled. By default, the terminal
is in canonical mode. The output of the stty command indicates this:

$ stty -a | grep canon
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt

In canonical mode, the driver processes the line editing keys:

e character erase (erase),
e word-erase (werase),
e line-kill (kill), and

e line redraw (rprnt)
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and recognizes the following special input charactersE} line delimiter (eol and eol12) and end-of-file
(eof). The eol and eol2 characters are equivalent. It also buffers the input characters until the
Enter key is pressed, at which point it delivers them to the process. Shells that support line editing
natively (by the shell itself) such as bash and tcsh ignore the stty command to turn off canonical
mode because they process the characters themselves. Canonical mode is turned off, but within the
shell, there will be no effect. To see the effect of disabling canonical mode, you have to run bash
with the --noediting command line switch.

In canonical mode, typed characters are processed and placed into the canonical input queue. In
non-canonical mode, they are delivered to the read() system call directly. We will demonstrate
this now. We will run a simple program similar to the copychars program but, just to make it
different, it will display not the typed character, but its transpose, defined here by transpose(c) =
islowercase(c)? ’a’ + 'z’ - c:c. The program is therefore

Listing transpose.c
#include <unistd .h>
#include <ctype .h>

int main(int argc, charx argv|])

{

char ch;
while ( read (0, &ch, 1) >0 ) {
if (islower(ch))
ch =
write( 1, &ch, 1 );
}

return 0;

We turn off canonical mode with the command, stty -icanon, and run the transpose program
in non-canonical mode. In my terminal, the erase character is the Backspace key, which echos as
"~?" (control-7). As soon as canonical mode is disabled, it will be hard to correct typing mistakes,
so it is easier to turn off canonical mode and issue the transpose command as a single job. The
interaction is as follows:

$ stty -icanon; transpose
azbycxdw™? ev

~C

For each character that I type, the transpose is printed immediately after, because the character is
given to the transpose program as soon as it is typed. This shows that when canonical mode is
off, there is no input buffering. Also, when I try to erase using the Backspace key, the character
pair "~?" appears on the screen but nothing is erased. Following it is a non-printing character. The
character code for the Backspace key is something that cannot be printed, so some type of symbol

U There are many more special input characters than these. These are just the ones that are processed in canonical
mode.
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will appear after the “~7” which is what is echoed for Backspace. If you try entering the line-kill
character, Ctrl-U, it will not erase the line. Nor will Ctr1-D send an EQOF signal. The program must
be killed with Ctrl-C. Furthermore, when I typed the Enter key, that was echoed and then printed
again, so two newlines were displayed. In a later chapter, we will explore other effects of disabling

canonical mode.

Terminals are complex structures. Most of their attributes should not be changed unless you really
understand how they are used. Some are communication characteristics, such as parity, start and
stop bits, handshake methods, hang-up methods, and so on. These are often not relevant to your
terminal settings; they are part of the stty command because it is also a general command for
controlling serial devices and real tty’s, for which they are necessary. You can read the man pages
for more detailed explanations of all of these attributes.

4.4.4 Programming the Terminal Driver

The stty command allows you to modify terminal settings from the shell, but it cannot be used
from within a program. To control most of the terminal characteristics from within a program, we
can use the pair of system calls, tcgetattr() and tcsetattr(). These get and set driver attributes
respectively. There is an alternative function, ioct1(), that can be used for controlling terminal
settings, but it is not preferred, because it is not supported by the standard. We will look at
ioctl() later. The ioctl() function is necessary for controlling devices other than terminals.

tcgetattr() and tcsetattr() are not the only functions that operate on the terminal settings.
There are actually 13 different functions in the POSIX standard. The remaining ones are

cfgetispeed() gets input speed
cfgetospeed() gets output speed
cfsetispeed() sets input speed
cfsetospeed() sets output speed

tcdrain() waits for all output to be transmitted
tcflow() suspends transmission
tcflush () flushes input and/or output queues

tcsendbreak() sends a break character

tcgetpgrp() gets foreground process groupid

tcsetpgrp() sets foreground process groupid

tcgetsid() gets process group ID of session leader for control of tty

Some of these act on the line discipline; others act on the device driver settings. We will only explore
a few of these.

Whereas fcntl() allows you to control disk file connections, these allow you to program terminal
driver attributes. Unlike fentl (), which can be used for both getting and setting attributes, the
work of getting terminal attributes is in one function, and setting, in another. The method of
making changes is the same though; you have to

e retrieve the current settings into a structure in the process’s address space using tcgetattr (),
e modify that structure locally, and

e write it back to the driver using the tcsetattr() call.
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The attributes are passed back and forth in a termios structure. There is a single man page for
termios, tcgetattr(), and tcsetattr() and all of the other functions listed above except the last
three. The following excerpts the relevant information:

NAME
termios , tcgetattr , tcsetattr , tcsendbreak , tcdrain ,
tcflush , tcflow , cfmakeraw , cfgetospeed , cfgetispeed ,
cfsetispeed , cfsetospeed
get and set terminal attributes,
line control ,get and set baud rate
SYNOPSIS
#include <termios.h>
#include <unistd .h>
int tcgetattr(int fd, struct termios xtermios p);
int tcsetattr (int fd, int optional actions,
struct termios xtermios p);

DESCRIPTION
The termios functions describe a general terminal interface
that is provided to control asynchronous communications ports.

Many of the functions described here have a termios p argument
that is a pointer to a termios structure. This structure
contains at least the following members:

tcflag t c¢_iflag; /* input modes x/
tcflag t ¢ oflag; /* output modes x/
tcflag t ¢ cflag; /* control modes x/
tcflag t c¢_l1flag; /* local modes x/
cc_t c_cc[NCCS]; /* control chars x/

The tcgetattr() system call is given a file descriptor and a pointer to a termios structure. The file
descriptor must refer to a terminal device file otherwise it is an error{izl. The tcgetattr() call will
store the attributes of the referenced terminal device in the termios structure. The tcsetattr ()
system call is also given a file descriptor and a pointer to a termios structure, but its second
parameter is a set of optional actions. These optional actions specify when to apply the changes to
the terminal device. There are three possible values for this parameter. From the man page (with
my corrections):

TCSANOW  The change occurs immediately.

TCSADRAIN The change occurs after all output written to £d has been transmitted. This function
should be used when changing parameters that affect output.

TCSAFLUSH The change occurs after all output written to the object referred to by fd has been
transmitted; furthermore, before the change takes place, all input data that has not
been read is discarded.

12This is yet another way to test whether a particular file descriptor points to a terminal device, along with
isatty () and ttyname().
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TCSANOW forces the change immediately; this can cause problems if the terminal driver is writing
to the terminal and the changes modify the output flags. TCSADRAIN forces the changes, but only
after the output queue has been emptied by the driver. This is the action that should be chosen
whenever the changes affect output to the terminal. TCSAFLUSH forces the changes only after the
output queues are emptied and after it causes the input data sitting in the queue to be discarded.
It is safest, when restoring the terminal to its original state, to use TCSAFLUSH.

Different versions of UNIX have different definitions of the termios structure. The definition found
in Solaris 9 complies with the Single UNIX Specification, Version 3, of the Open Group@ (also
known as TEEE Std 1003.1), the most generally accepted UNIX standard. The definition found in
the /usr/include/bits/termios.h header file on Linux 2.6 contains other fields (which is allowed
by POSIX ):

struct termios

{

teflag t ¢ iflag; /* input mode flags x/
tcflag t c_oflag; /* output mode flags x/
tcflag t ¢ cflag; /* control mode flags x/
tcflag t c_lflag; /* local mode flags x/
cc_t c_line; /* line discipline =/
cc_t c_cc|NCCS]; /* control characters x/
speed t c¢_ispeed; /* input speed x/
speed t c_ ospeed; /* output speed x/

The ¢_line, ¢_ispeed, and c_ospeed members are not part of the standard, which allows the
structure to contain additional members. Although tcflag_t is an integer whose individual bits
are flags, you do not need to know the individual bit positions of the flags, because the header file
defines masks for each one. The order of the bits may vary from one implementation to another.
POSIX specifies one set of flags, XOpen another, Open Source yet another, and so on.

The flagsets are illustrated in Figure Fach box is a single integer flagset. The names inside
each are the names of the individual bit masks. Each of these flags is described in the man page
for termios. The c_iflag member contains flags that define input processing. The c_oflag
member contains flags that define output processing. The c_cflag has flags that define control
characteristics, and the c_1flag member has flags that define how characters are processed locally,
i.e., internally in the driver. The c_cc array is an array that stores control character assignments.
This is where the map of erase key, backspace key, and so on, is stored. POSIX requires that the
following subscript names must exist:

13You can download version 3, the latest version, from http://www.unix.org/version3.
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c_iflag c_oflag c_cflag c_lflag
IGNBRK OPOST CSIZE ISIG
BRKINT ONLCR CSTOPB ICANON
IGNPAR OLCUC CREAD ECHO
PARMRK OCRNL PARENB ECHOE
INPCK ONLRET PARODD ECHOK
ISTRIP OFILL HUPCL ECHONL
INLCR OFDEL CLOCAL NOFLSH
IGNCR NLDLY CRTSCTS TOSTOP
ICRNL CRDLY CIBAUD ECHOCTL
TIUCLC TABDLY PAREXT ECHOPRT
IXON BSDLY CBAUDEXT ECHOKE
IXANY FFDLY DEFECHO
IXOFF VTDLY FLUSHO
IMAXBEL PENDIN
IUTF8

Figure 4.4: Flagset bitmasks of the termios struct

Canonical Mode Non-Canonical Mode Description

VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character
VMIN MIN value
VQUIT VQUIT QUIT character
VSTART VSTART START character
VSTOP VSTOP STOP character
VSUSP VSUSP SUSP character
VTIME TIME value

The size of the c_cc array is defined to be NCCS, which is a macro definition exposed by the
<termios.h> header file.

You can change individual bits in the flagsets with bitwise operations. If MASK represents an arbitrary
bit mask, then the following test, set, and clear the bits in a flagset:

if ( flagset & MASK ) ... //tests the masked bit
flagset |= MASK //sets the masked bit
flagset &= "MASK //clears the masked bit

For example, to turn off terminal echo, assuming flagset is a local copy of the c_lflags flagset
from the termios structure, we would use

flagset = flagset & "ECHO;
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Following is a program that prompts the user to enter a password and makes the typing invisible
when the password is entered, as the login program does. The program turns off the echo switch

and resets it afterward.

Listing login.c
#include <stdio.h>
#include <stdlib .h>
#include <termios .h>

int main(int argc, charx argv[] )

{
struct termios info, orig;
char username [33];
char passwd[33];
FILE xfp;
/* get a FILEx to the control terminal —  don’t assume stdin x/
if ((fp = fopen (ctermid (NULL), "r+")) = NULL)

return (1);

printf("login: "); /* display message */
fgets (username, 32, stdin); /* get user’s typing */
/* Now turn off echo x/
tcgetattr (fileno (fp), &info); /* Get current terminal state x/
orig = info; /* Save a copy of it x/
info.c_lflag &= "ECHO ; /* Turn off echo bit * /
tcsetattr (fileno (fp) , TCSANOW,& info ); /x Set state in line discipline x/
printf("password: ");
fgets ( passwd, 32, stdin); /* Get user’s non—echoed typing

*/
tcsetattr (fileno (fp) , TCSANOW,& orig); /+ Restore saved settings

*/
printf("\n"); /* Print a fake message

*/
printf("Last login: Tue Apr 31 21:29:54 2088 from the twilight zone.\n");
return 0;

}

Comments

e This is the standard procedure: use the tcgetattr() to get the old state, save a copy, make

the change, set it with tcsetattr(), do the work, and then restore.

e We read from and write to only the control terminal and return an error if we can’t open this
device for reading and writing. We can get the name of the control terminal with ctermid(),
and get the file descriptor from the name with the fileno() function. This is more secure.

e We don’t use "/dev/tty" ; it is not as reliable as calling ctermid().
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4.4.5 Implementing stty: showtty

Implementing a user-friendly, perhaps more verbose, version of stty is a good exercise in using the
termios structure. We will write a POSIX compliant version, so it should display the correct values
of any flags that it does attempt to display.

The basic idea is very straightforward: tcgetattr() is used to retrieve the settings of the flagsets.
The show_flagset () function prints the status of each flag in the four flagsets and the show_cc_array ()
function prints the mapping of control characters to character codes. Their designs are similar and
are based on the use of an array of structures that contain a value and a textual description or name
associated with that value:

/* Mapping of flag bit position to name x*/
typedef struct flaginfo flaginfo;
struct _ flaginfo
{
int fl_value; // flag wvalue
char «#fl name; // string describing flag

s

/* Mapping of index to description x/
typedef struct cc_ entry cc_entry;
struct _cc_entry {

int index;

char xdescription;

s

A single flagset is then represented by an array of flaginfo structures, and the array of control
character codes is represented in a similar way by an array of cc_entry structures. For example,
the input flags are defined by the constant array

flaginfo input flags|[] = {

{IGNBRK , "Ignore break condition" },

{BRKINT | "Signal interrupt on break" },
{IGNPAR , "Ignore chars with parity errors" },
{PARMRK , "Mark parity errors" },

{INPCK , "Enable input parity check" },
{ISTRIP , "Strip character" },

{INLCR , "Map NL to CR on input" },

{IGNCR , "Ignore CR" },

{ICRNL , "Map CR to NL on input" },

{IXON , "Enable start/stop output control" },
{IXOFF , "Enable start/stop input control" },
(-1 , NULL }

s

and the control characters, by the constant array
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cc_entry cc_values|[] = {
{ VEOF, "The EOF character"},
{ VEOL, "The EOL character"},
{ VERASE, "The ERASE character"},

#if defined VWERASE
{ VWERASE, "The WERASE character"},

#endif
{ VINTR, "The INTR character"},
{ VKILL, "The KILL character"},
{ VQUIT, "The QUIT character"},
{ VSTART, "The START character"},
{ VSTOP, "The STOP character"},
{ VSUSP, "The SUSP character"},
{ VMIN, "The MIN value "},
{ VTIME, "The TIME value"},
{ -1, NULL}

}s

Notice that each array is terminated by a sentinel value -1. Notice too that the VWERASE code is
only conditionally compiled, because POSIX does not define it. The logic in processing either array
is similar. The function to display the character codes for the c_cc array is

void show cc_ array( struct termios ttyinfo ,
cc_entry controlchars || )

while ( —1 != controlchars|i].index ) {
printf( "%s is ", controlchars|[i]|.description);
printf( "Cntl-%c\n",
ttyinfo.c_cc[controlchars[i].index] —1 +’A’);
i4+;

For each character code in the array whose index is not -1, it prints the description from the structure
and the value of the code as a "control-something" name. These “control-something” names, e.g.,
“Ctrl-A”, “Ctrl-B”, and so on, through “Ctrl-_", derived from the fact that on a keyboard, it is
often possible to generate a control code using the control (Ctrl) key and a normal key. By adding
the code for A’, less one, to the index stored in the c¢_cc array, we get the keyboard key that should
be typed to enter that code from the keyboard.

The show_flagset () function is similar. It is called by a function, show_flags(), that simply calls
show_flagset () for each different flagset.

void show flagset( int flag, flaginfo bitnames]|[]| )

{
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int 1 = 0;

while (=1 != bitnames|[i].fl value ) {
printf( "%s is ", bitnames|[i]|.fl name);
if ( flag & bitnames|[i].fl value )
printf ("ON\n");
else
printf ("OFF\n");
iF;

}

The main program calls a function, show_baud_rate(), that when given the termios structure
ttyinfo, converts the symbolical values of the baud rate into numerical values. The show_baud_rate()
function calls cfgetospeed() to extract the baud rate from the structure. The main program is
below.

int main(int argc, charx argv|])

{

struct termios ttyinfo;
FILE *x1p ;

if ((fp = fopen(ctermid (NULL), "r+")) = NULL )

exit (1);

if ( tcgetattr( fileno(fp) , &ttyinfo ) == —1 ){
perror ( "Cannot get info about this terminal.");
exit (1);

}

show baud rate (ttyinfo);

printf("\n");

show cc_array(ttyinfo, cc_ values);

printf("\n");

show flags(ttyinfo , input_ flags, output flags, local flags);
return 0;

4.4.6 Non-Canonical Terminal Modes

Recall that in canonical mode, the terminal driver assembles input into lines, interpreting various
special characters such as backspace, and then delivering it to the process. Above we noted that in
non-canonical mode, input buffering is turned off and typed characters are delivered immediately to
the reading process. Here we will explore the features of the line discipline that allow us to control
more precisely how many characters are delivered to the process and when they are delivered. We
will use the transpose program for demonstrating this.

When canonical mode is turned off, the min option to stty controls the minimum number of
characters that must be typed before they are transmitted to the program. For example
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$ stty -icanon min 4

puts the terminal into non-canonical mode and sets the minimum number of characters that must
be typed before anything is transmitted to the program to 4. Try typing the following:

$ stty -icanon min 3; transpose
abczyxdefwvu
~C

Notice that three characters at a time are sent to the program, and that until you type three
characters, none will be sent. This shows that although there is no buffering until an EOL is entered,
a read operation is not considered to be complete unless the minimum number of characters is
present in the driver.

Within the termios structure, the MIN member of the c_cc array (c_cc[VMIN]) specifies the mini-
mum number of bytes before a read() call returns. MIN can be zero or positive. The TIME member
of the c_cc array (c_cc[VTIME]) specifies the number of tenths of a second that a read() call must
wait for data to arrive. It too can be zero or positive. There are thus four combinations of values
for this pair of variables, each with different semantics. Assume in the following that the call to
read() is

read (STDIN_FILENO, buf, numbytes_to_read);

Case 1. MIN > 0, TIME > 0

The read() call will block (and hence the calling process will block) until it receives
the first byte. TIME specifies an inter-byte timer that is activated only when the first
byte is received. In other words, until the user types, the timer is inactive. After each
byte is received, the timer is reset to 0. Once the user starts to type, if the lesser of
numbytes_to_read and MIN bytes are received before the timer expires, read() returns
that many bytes. Remember that the timer is reset after each byte. If the timer expires
before MIN bytes are received, read () returns whatever bytes it received. (At least one
byte is returned if the timer expires, because the timer is not started until the first byte
is received.) If data is already available when read() is called, it is as if the data had
been received immediately after the read(). This means that the read() can return
immediately if enough data was in the input queue of the line discipline (inside the
terminal driver).

Case 2. MIN > 0, TIME ——

The read() does not return until MIN bytes have been received. Setting TIME to zero
means that the timer is turned off. It is given an infinite amount of time, in effect
and so this can cause a read() to block indefinitely, waiting for input. The lesser of
numbytes_to_read and MIN bytes are returned to the user process. This means that if
numbytes_to_read < MIN, then read() is not satisfied until MIN bytes are received, but
it only gives numbytes_to_read to the caller. If numbytes_toread > MIN, then read()
returns when MIN bytes are received and MIN bytes are given to the caller.
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Case 3. MIN == (, TIME > 0

Unlike Case 1, TIME specifies a timer that is started when read() is called. It is not
an inter-byte timer. In this case, read() returns when a single byte is received or
when the timer expires. If the timer expires, read() returns 0, otherwise it returns the
number of bytes read. If there are characters in the terminal’s input queue before the
read() call is processed, the minimum of the number of characters in the queue and
numbytes_to_read bytes will be delivered to read() immediately, satisfying the call,
and read () will return the number of bytes actually read.

Case 4. MIN —— 0, TIME —

The minimum of either the number of bytes requested, i.e. numbytes_to_read, or the
number of bytes currently available is returned to the caller without waiting for more
bytes to be input. If no characters are available, read () returns 0, having read no data.
Otherwise the number of bytes actually read is returned. In both cases, read() returns
immediately.

To demonstrate, first, in non-canonical mode we will set min = 0 and time = 30. What you will see is
that if a character is typed within 3 seconds ( 30 tenths of a second), it will be delivered immediately,
but if no character is typed within 3 seconds, the read will return with an EOF character. Type some
characters with 3 seconds each and then let 3 seconds elapse. You will see the program terminate.

$ stty -icanon min O time 30 ; transpose

You may also discover that your shell terminates. Before you do this, make sure that you set the
IGNOREEQF environment variable so that you do not lose your shell. If you see repeated messages of
the form "Use exit to logout" then turn off the terminal settings with reset.

Next, test the effect of setting min and time to be non-zero. Type the following command sequence:
$ stty -icanon min 4 time 30 ; transpose

Wait at least 3 seconds and notice that nothing happens. The program is waiting for input. There
is no timeout and the read has not returned. Now type a single character and wait several seconds.
You will see its transpose after 3 seconds, demonstrating that the read returned with only 1 character
after a delay of 30 time units. Now type 4 characters and see how quickly the program prints their
transposes. The driver is waiting 3 seconds for the minimum number of characters to be entered;
if they are entered before 3 seconds, it returns, otherwise it returns after 3 seconds with as many
characters as were entered. Kill the process with Ctrl-C and turn canonical mode back on.

These experiments demonstrate that with canonical mode off, you can control input precisely. So
far we have been using the stty command to control the terminal driver. In a program you can
use tcgetattr() and tcsetattr() instead. The following listing is of a program that allows you
to test the effects of various combinations of terminal settings, giving specific values to the MIN and
TIME parameters in non-canonical mode.
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Listing canon mode test.c
#include <stdio.h>
#include <stdlib .h>
#include <termios.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>

#define SLEEPTIME 2

[ %%
Gets input under the mode specified by the values of iscanon, vmin, and
vtime. See the notes or the termios man page for the meaning of the vmin
and vtime parameters.

*/

void get response( int iscanon , int vmin, int vtime);

/* Sets the VMIN value to vmin, VIIME to vtime, turns off icanon x/
void set mnon canonical(int vmin, int vtime);

/* if how = 0 this saves the termios state for later restoring */
/% if how =— 1 this restores the termios state from the saved state x/
/* CANNOT CALL with how = 1 before first calling with how =— 0 * /

void tty mode(int how);

int main(int argc, charx argv][])

{

int bNoCanon = 1; /x default is non—canonical mode x*/

int vmin = 1; /% default is one char x/

int vtime = 0; /x default is to force reads to wait for vmin chars x/
int ch;

char optstring[] = ":hcm:t:";

while (1) {

ch = getopt(argc, argv, optstring);
if ( =1 = ch )

break ;
switch (ch) {
case 'h’ :
printf ("Usage: %s [—~hbc] [ -m MIN | [ —t TIME ]|\n",argv[0]);
printf (" —h : help\n");
printf (" —c : turn on canonical mode\n");
printf (" —m : set VMIN value \n");
printf (" —t : set VIIME value \n");
exit (0);
case ‘¢’ :
bNoCanon = 0; /+ meaning canonical mode is ON x/
break ;
case 'm’ :
vmin = strtol (optarg,’\0’,0);
break ;
case ’t’
vtime = strtol (optarg, ’\0’,0);
break ;
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case 77

break ;

break ;

default :
fprintf(stderr, " ");

}

case

}

/* Report on state that we will put terminal in =/
if ( bNoCanon )

printf (" Canonical mode off\n");
else

printf (" Canonical mode on\n");

printf ("VMIN set to %d\n",vmin);
printf ("VIIME set to %d\n",vtime);

/* save current terminal state x/
tty mode (0);

/* if canonical mode flag , unset icanon x*/
if ( bNoCanon )
set _non canonical (vmin, vtime);

/* call function to get input x/
get response (!bNoCanon, vmin, vtime);

/* restore terminal state x/
tty mode (1);

/* flush input stream x/
tcflush (0, TCIFLUSH ) ;
return 0;

}

void get response( int iscanon, int vmin, int vtime)
{

int num _bytes read;

char input [128];

fflush (stdout );
sleep (SLEEPTIME) ;
if ( iscanon )
printf("About to call read() in canonical mode\n");
else
printf("About to call read() with MIN = %d and TIME = %d\n",

vmin , vtime);

printf("Enter some characters or wait to see what happens.\n");
num_ bytes read = read (0, input, 10) ;
if ( num bytes read >= 0 ) {
input [num_bytes read] = ’\0’;
if ( num_bytes_read > 0 )
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printf("\nReturn value of read() is %d; chars read are %s\n",
num_bytes read, input );

else
printf ("\nReturn value of read() is %d;"
" no chars were read\n",num _ bytes read);

}

else
printf("read () returned —1\n");

}

void set mnon_ canonical(int vmin, int vtime)

{
struct termios ttystate;
tcgetattr( 0, &ttystate); /* read curr. setting */
ttystate.c lflag &= TICANON; /+ no buffering */
ttystate.c_cc[VMIN] = vmin; /* get min of vmin chars x/
ttystate.c_cc[VIIME] = vtime; /* set timeout to vtime x/
tecsetattr ( 0 , TCSANOW, &ttystate); /% install settings * /

}

void tty mode(int how)
/* if how = 0 saves the termios state and fd flags for later restoring * /
/* if how = 1 restores the termios state and fd flags from the saved state x/
/* CANNOT CALL with how == 1 before first calling with how =— 0 %/
{

static struct termios original mode;

static int original flags = —1;

if ( 0 == how ){
tcgetattr (0, &original mode);
original flags = fcntl (0, F_GETFL);

}
else {
if ( —1 = original flags ) {
fprintf(stderr, "tty mode(1l) called without saving first.\n");
exit (1);
}

tcsetattr (0, TCSANOW, &original mode);
fcntl( 0, F_SETFL, original flags);

}

Before we leave this topic, let us see what happens when we disable the ability to process signals
from the terminal. When you type a Ctrl-C at the keyboard, you usually do so to kill the foreground
process. Why does this happen? The answer is a bit deeper than we explain here, but the general
idea is that the Ctrl-C is mapped by the terminal driver to a signal named SIGINT, and that signal is
delivered to the foreground process. This usually results in its being terminated. A similar sequence
takes place when you type other keyboard signals, such as Ctrl-\ and Ctrl-Z. These do not result
in the same signals, but they are delivered to the process nonetheless.

The terminal is aware of three special control characters, known as the interrupt, quit, and suspend
characters, usually Ctrl-C, Ctrl-\, and Ctrl-Z respectively. The isig switch to stty enables
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detection and transmission of these characters. We will experiment with this idea. Have a second
terminal window open before you start this. Make sure you restore the terminal to canonical mode

and type the following:
$ stty -isig ; transpose

You can now type a line of characters and transpose will correctly transpose them. But try to
terminate the program with Ctrl-C and you will be disappointed. Nor can you cannot stop it with
Ctrl-Z or Ctrl-\. The terminal will not interpret these character codes as signals. Now you will
have to issue a kill -9 to terminate the transpose process in the other terminal window. You can
use pkill to do this; for example:

$ pkill -9 transpose

You can remap other characters to these special characters using the terminal driver. It is a good
exercise to try.

4.4.7 Other Terminal Processing Modes

There are a large number of possible combinations of terminal settings that make the terminal
behave somewhere between the extremes of canonical mode and raw mode, in which most, but not
all processing is turned off. For example, the driver can buffer characters but not allow editing. It
can buffer characters, allow editing, but not echo anything. Most of these other modes are nameless.
Raw mode was the name of a mode defined in Version 7 UNIX| as was cbreak mode. Programs that
need complete control of their windows or the screen operate in raw mode usually, since they have
to turn off all processing and do it on their own.

Regardless of the input mode of the terminal, the terminal driver must manage flow control of
output. A process will typically generate characters faster than the hardware can display them.
The driver has to block the process when the buffers are full.

4.5 1/0 Control Using ioctl

The fcntl() call accesses disk driver attributes and the tcgetattr() call accesses terminal driver
attributes. UNIX provides a more general-purpose device-control system call, ioct1(), which can
be used to access and control any I/O device for which the manufacturer has provided a device
driver. Although most operations on devices can be achieved with the previously described system
calls, most devices also have some device-specific operations that do not fit into the general model,
such as

e changing the character font used on a terminal,
e telling a magnetic tape system to rewind or fast forward?]

e ejecting a disk from a drive,

MSince tapes do not move in byte increments, 1seek() cannot do this.
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e playing an audio track from a CD-ROM drive, and

e maintaining routing tables for a network.

The ioctl() function was designed to overcome these problems. It was first introduced in Version
7 AT&T UNIX as a general purpose I/O control program, to allow user level programs to access
device drivers, hidden within the depths of the kernel. As time went on, more and more devices were
handled through ioctl() calls. However, POSIX separated out the terminal control functions into
the termios structure and functions, and for the most part, the ioct1() function is used today for
accessing other devices. POSIX does not define ioctl(), but GNU includes the ioct1l() function
in its distribution of the C Standard Library.

The various device operations, known as IOCTLs, are assigned code numbers and multiplexed
through the ioct1l() function, which is defined in <sys/ioctl.h>. The code numbers themselves
are defined in many different headers.

The ioctl() system call is given a file descriptor of a device file, and an IOCTL, which is an integer
that represents a particular request that ioct1() should execute. If the request requires arguments,
these are included after the command number. The man page begins as follows:

NAME
ioctl — control device
SYNOPSIS
#include <sys/ioctl.h>
int ioctl(int fildes , int request, /x arg *x/ ...);
DESCRIPTION
The ioctl() function manipulates the underlying device
parameters of special files. In particular , many operating
characteristics of character special files (e.g.,terminals)
may be controlled with ioctl () requests. The argument d
must be an open file descriptor.

The second argument is a device—dependent request code. The
third argument is an untyped pointer to memory.

There are over 400 different request types, each defined by a different mnemonic code. The
ioctl_list man page contains the list of valid request mnemonics that can be passed to ioctl()
together with their argument types. Each device driver can define its own set of ioctl commands.
The system, however, provides generic ioctl commands for different classes of devices. Generally
speaking, the commands for the different classes have a prefix that identifies the type of com-
mand. For example, the magnetic tape commands are of the form MTIOxxx and can be found in
<sys/mtio.h>, and the terminal I/O commands are of the form TIOxxx.

A simple example of an ioctl() is the call to retrieve the size of a terminal window. Terminal
window sizes are defined by the winsize structure in the <ioctl-types.h> header file, which is
included in <sys/ioctl.h>. The winsize structure looks like:
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struct winsize

{
unsigned short int ws row;
unsigned short int ws col;
unsigned short int ws_ xpixel;
unsigned short int ws_ ypixel;

i

The pixel width and height are not normally assigned values by the kernel, but the rows and
columns fields are. Therefore, we can obtain the rows and columns with a simple program such as
the following.

#include <termios.h>
#include <stdio .h>
#include <stdlib .h>
#include <unistd.h>
#ifndef TIOCGWINSZ
#include <sys/ioctl.h>
#endif

void get winsize(int fd,
unsigned short *rows,
unsigned short xcols )

struct winsize size;

if (ioctl(fd, TIOCGWINSZ, &size) < 0) {
perror ("TIOCGWINSZ error");

return ;
*TOWS = Slze .WsS_TIOwW;
xcols = size.ws col;

}

int main(int argc, charx argv|])

{

unsigned short int rows, cols;

if (isatty (STDIN FILENO) — 0) {
fprintf(stderr, "Not a terminal\n");
exit (1);

¥

get winsize (STDIN FILENO, &rows, &cols);

if ( rows > 0 )
printf("%d rows, %d columns\n", rows, cols);
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return 0;

In general, one should try to avoid the use of ioctl() if there is an alternative means of performing
the same task, as it is not completely portable. There are many IOCTLs for which alternative
functions exist. For example, there are IOCTLS for the terminal interface. The tty_ioctl manpage
has a complete list of them. Some have equivalents and others do not:

IOCTL  argument equivalent to

TCGETS struct termios *argp tcgetattr(fd, argp)

TCSETS const struct termios *argp tcsetattr(fd, TCSANOW, argp)
TCSETSW  const struct termios *argp tcsetattr(fd, TCSADRAIN, argp)
TCSETSF  const struct termios *argp tcsetattr(fd, TCSAFLUSH, argp)

TCSBRK int arg tcsendbreak(fd, arg)

TIOCINQ int *argp none - counts bytes in the input buffer
TIOCOUTQ int *argp none - counts bytes in output buffer
TCFLSH int arg tcflush(fd, arg).

TIOCSTI char *argp none — inserts *argp into input queue

We could rewrite the setecho program to use these IOCTLs instead of using tcgetattr() and
tcsetattr (), simply as an exercise. It is displayed in the listing that follows.

Listing setecho ioctl.c

int main(int argc, char xargv|[])

{

struct termios info;

FILE xfp ;

if ( arge < 2 ) {
printf("usage: %s [y|n]\n", argv[0]);
exit (1);

}

if ((fp = fopen(ctermid (NULL), "r+")) == NULL)
return (1);

/* retrieve termios struct =/

if ( ioctl( fileno (fp) , TCGETS, &info ) =— -1 )
die("ioctl", "1");

/% If second argument starts with 'y’ it is yes, echo on otherwise off x/

if ( 'y’ == argv[1][0] )
info.c Iflag |= ECHO ;

else
info.c Iflag &= "ECHO ;

/* replace termios with the modified copy x/

if ( ioctl(fileno (fp),TCSETS, &info) — -1 )
die("ioctl " "2");
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return 0;

}

Another use of ioctl() is to manipulate the terminal input queue. One can use the TIOCSTI
TOCTL to insert bytes into a terminal input queue. The following listing demonstrates how one can
insert bytes into the input queue of a pseudoterminal.

It repeatedly inserts a single ’x’ into the terminal input queue of the controlling terminal of the
process, BUFFERSIZE-1 times, after which it inserts a newline so that if the terminal is in canonical
mode, a call to read() will deliver the characters. It then removes the characters from the queue
by entering a loop that reads a single character at a time. To allow a second program to be run to
watch the queue size, it sleeps a bit before starting to read from the terminal.

During the read loop, it sleeps enough time so that the second program can watch the queue size
diminish. Without this bit of delay between each read, the watching program would not see the
queue decrease by one character at a time, but would just see it go straight to zero. When it is
finished reading, it writes it to the standard output.

Listing ioctl2.c
#include <unistd .h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <stdio.h>

#define BUFFERSIZE 30
int main ()

{

int i;

char ch = 'x7;

char newline = ’\n’;

char buf[BUFFERSIZE | ;

/* Insert BUFFERSIZE-1 ’x’s into the terminal input queue x*/

for ( i = 0; i < BUFFERSIZE—1; i++ )
ioctl (0, TIOCSTI, &ch);

/* Because we assume canonical mode is on, we put a newline there
so that when the read is issued, the characters will be
transmitted x/

ioctl (0, TIOCSTI, &newline);

/* Delay to allow queue—reading demo to start up */

sleep (10);

/* Read the queue one char at a time x/

i = 0;

while ( read(0 , &ch, 1) > 0 ) {
buf[i] = ch;

i 4=
if ( ch = "\n’ ) /x to exit loop x/
break ;
/* Delay a bit so other program can see queue size drop */
usleep (100000);
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}

/* Write the buffer contents to the terminal =/
write (1, &buf, i);
return 0;

}

The last demo program shows how the TIOCINQ IOCTL can be used to query the size of the input
queue. It opens the terminal device file specified on the command line, and then enters a loop of
fixed duration in which it uses the ioct1 () function to query the size of that terminal’s input queue.
It writes the size of the queue into a file named queue_log in the current working directory.

Listing ioctl3 .c
#include <stdio .h>
#include <unistd .h>
#include <stdlib .h>
#include <termios.h>
#include <fentl . h>
#include <sys/ioctl.h>
#include "utils.h"

int main(int argc, charx argv|[] )

{

FILE *fp ;
int count , 1i;
int fd ;

/% Try to open given terminal device file x/
if ((fd = open(argv|[l], O RDONLY)) =— —1)
die("open", argv|1l]);

/* Open queue log in current working directory =/
if ((fp — fopen("queue log", "w")) — NULL) {
printf("Could not open queue log\n");
exit (1);

}

/* For a fixed amount of time (for simplicity) count queue size x/
for (1 =0; i < 400; i++ ) {
if ( ioctl( fd, TIOCINQ, &count ) =— —1 )
die( "ioctl", "TIOCINQ");
fprintf (fp, "%d chars in queue\n", count);
/% delay to see changes =/
usleep (100000);

}

fclose (fp);
return 0;

t
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If you start up ioct12 and note which terminal it is in, and then start ioct13 in a different terminal,
specifying the first terminal as its argument, when ioctl3 terminates, look at the contents of
queue_log and you will see the queue size diminish with each read.

One could write a program that kept track of the input queue size of all open terminals, with root
privilege, for administrative purposes, using this idea.

4.6 Summary

A process’s connnection to a file is encapsulated in a data structure maintained by the kernel,
invariably called something like a file structure or a file entry. That structure contains flags that
determine how the I/O is performed. A process can set various flags when it first opens the file,
using the open() system call, and it can modify various flags using the fcntl () system call.

Terminals and pseudo-terminals are represented by device files, and as such, fcntl() can also be
used to modify a process’s connection to them  but in addition, there is an API for altering the
characteristics of terminals directly. This chapter explored the ways in which a process could control
the terminal characteristics, both by altering them directly and by altering the process’s connection
to terminals. It also showed how the non-POSIX ioctl() function could be used for controlling
terminals and other devices.
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