
UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Chapter 5 Interactive Programs and Signals

Concepts Covered

Software tools, daemons,

interactive programs

non-blocking reads, signals,

signal, sigaction, kill, �ush, raise

sigemptyset, sig�llset, sigaddset,

sigdelset,sigprocmask, sleep

5.1 The Di�erent Types of UNIX Programs

Programs that run in a UNIX environment can be classi�ed by their relationship to terminal devices
and by their input/output streams. They generally fall into one of three categories: software tools,
daemons, and interactive user programs.

5.1.1 Software Tools (Filters)

A software tool is a program that

• receives its input from either

� one or more �les given as command-line arguments, or

� from standard input if no �lename arguments are present,

• expects its input to be an unstructured stream of bytes, almost always treated as plain text,
and

• puts its output, which is also a stream of bytes, usually plain text, on standard output.

Because software tools can read from standard input and write to standard output, they can be
connected via shell pipes to form pipelines, like factory assembly lines. UNIX has many software
tools, including awk, cat, cut, du, fold, grep, od, sed, sort, tr, and uniq.

5.1.2 Daemons

Another class of programs are device drivers, which are not even attached to a terminal. A program
that is not attached to a terminal is called a daemon in UNIX. A commonly used, but inaccurate,
de�nition of a daemon is that it is a "background" process. To be precise, it is a process that
executes without an associated terminal or login shell, waiting for an event to occur. The event
might be a user request for a service such as printing or connecting to the Internet, or a clock tick
indicating that it is time to run. The word "daemon" is from Greek mythology, and refers to a lesser
god who did helpful tasks for the people he or she protected. Daemons are like these lesser gods;
they are created at boot time, and exist, in hiding, ready to provide services when called upon.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Because daemons must not be connected to a terminal, one of their �rst tasks is to close all open �le
descriptors (in particular, standard input, standard output and standard error). They usually make
their working directory the root of the �le system. They then take additional steps to break their
association with any shell or terminal, among which are leaving their process group and registering
their intent to ignore all incoming signals. The concept of process groups will be discussed in
Chapter 8. Signals are covered later in this chapter.

Daemon process names typically end in 'd'. This is one way to identify a daemon process in the
output of the ps -ef command; �nd the names ending in "d" as in ftpd, httpd, lpd, sshd, syslogd,
and telnetd. Daemons will be covered thoroughly in Chapter 8.

5.1.3 Interactive User Programs

Another category of programs are those that are tied to the user terminal in an inextricable way,
because they customize the terminal for their own use. Programs that interact with the user through
the terminal, such as text editors (vi, nano, or emacs), pagers (more and less), terminal-based
administrative tools such as top, games (snake, worm, and chess), and terminal-based mail clients
(pine and mailx), are tightly coupled to the terminal and must control its settings and attributes.
They cannot use the standard input and output streams for communicating with the user because
these lack the types of controls that a terminal has. These types of programs usually need to control

• whether or not characters are echoed,

• the number of characters that are bu�ered, if any,

• the movement of the cursor on the screen,

• whether certain key presses should have their default meaning or have application-de�ned
meaning,

• whether timeouts should occur on input,

• whether signals such as Ctrl-C should be ignored, queued, or handled immediately.

We already saw how to control the state of the terminal using stty at the command level and
the tcgetattr() and tcsetattr() functions at the programming level. Here we will explore the
various modes into which we can put the terminal for the bene�t of creating interactive programs.

5.2 Designing Interactive User Programs

Most interactive user programs are event-driven or menu-driven, which means that they perform
some short task and then wait for user input to do the next task. All window-based applications are
event-driven; they are idle, often blocked on input, while they wait for mouse, keyboard, or other
events to be delivered to them by the window manager.

Here we go through the steps that are necessary to design and develop an interactive, terminal-based
application. We will begin by understanding the problem, and then we will go through successive
stages of making a program more and more responsive to user inputs.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
2

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.2.1 Two Di�erent Paradigms

Consider the kind of terminal-based program in which the program repeatedly prompts the user
for input and takes an action accordingly. One of the user responses such programs expect is some
type of quit signal, which typically breaks the loop and ends the program. This can be modeled by
a control structure such as the following:

whi l e (t rue) {
prompt the user to do something
wait f o r the user to respond
i f user ' s r e sponse i s to qu i t

break the loop and qu i t
handle the re sponse

}

The input part of this loop usually results in the process's being blocked on input, but it does not
have to be designed this way. It might look like

whi l e (t rue) {
prompt the user to do something
i f the user responded

handle the re sponse
otherw i s e

do other th ing s
}

In this paradigm, the program checks whether there is input and if there is, it responds to it, and
if not, it does something else. This approach requires the ability to check if there is input without
blocking while waiting for it. In short, it requires a type of input operation known as non-blocking
input, which will be discussed below.

Regardless of which input method is used, programs such as video games, ATM machines, and
text editors respond immediately to user key presses, rather than waiting for the Enter key to be
pressed. They run in non-canonical mode, so they do not bu�er input characters. Usually, they do
not echo the input characters when these characters behave like function keys1. Also, they usually
ignore illegal key presses. Thus, one task in designing interactive programs is to determine how to
control the state of the terminal in this way.

But this is not enough. There is a big di�erence between a video game and a text editor, having to
do with their relationship to time. We can distinguish between two kinds of interactive programs:
those whose state is independent of time, and those whose state depends upon time. Any program
that animates, in any way, is time-dependent; its state changes as a function of time. Programs
that terminate or advance to a di�erent state if the user does not respond within a certain amount
of time are also time-dependent, because their state changes as a function of time. Video games are
time-dependent. In contrast, a text editor is usually time-independent; it has no time-outs and no
animation of any kind.

Programming with time is more complex than programming in a time-independent way because it
requires knowledge of several di�erent parts of the kernel API. Before we tackle this problem, we
will explore a simpler one, namely how to write a text editor.

1Think about vi for example, and how it behaves in Command mode; you type a 'j' and it moves the cursor

without displaying the letter, or more, when you type a space character and it advances a screen's worth of lines.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.2.2 A Simple Text Editor: simplevi

The vi text editor is a very complicated piece of software, but we can create an extremely stripped-
down version of it and still learn quite a bit in the process. We will call our editor simplevi.
This simple editor will allow the user to insert characters anywhere in a text document, but it will
not provide a means of deleting characters. This is just a minor extension to the program. Also,
it will not open an existing text �le, but will instead creating a new �le each time it is invoked.
Adding a feature to open a �le does not provide much more insight into the interactive design of
the program, but it does make the program larger. As much as possible, the features that simplevi
does implement will have the same semantics as those in vi.

5.2.2.1 Features of simplevi

The simplevi program allows a user to create a �le in a manner similar to vi. It has only an insert
command and does not presently support deletion. Like vi, it is always in exactly one of three
possible modes:

• input mode

• command mode, and

• last_line mode

Each mode is now described brie�y.

Command Mode The initial mode is command mode. In command_mode one can enter the
following keystrokes/commands:

Key Semantics

i changes to input mode.

: changes to lastline mode.

h, backspace, or
left-arrow key

moves left until the �rst character in the text line. If a line wraps, it
follows the wrapped text backwards.

l, spacebar, or
right-arrow key

moves right until the last character in the text line. If a line wraps, it
follows the wrapped text backwards.

k or up-arrow key moves to the text line above, to the same position relative to the start
of the text line, unless that text line is shorter than the current one, in
which case it is placed at the end of the text line. Scrolling takes place
as necessary.

j or down-arrow
key

moves to the next text line below, using the same rule as for the up
arrow when deciding the horizontal position. Scrolling takes place as
necessary.

Ctrl-D Does nothing except display the message that it was pressed.

Ctrl-C Does nothing except display the message that it was pressed.

Ctrl-H Can be used to display a help screen, but at present just shows a
one-line text message.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Notes

• Navigation keys use rules similar, but not identical, to vi's rules. The only di�erence is that
vi remembers the last horizontal movement, and when a vertical movement is indicated, the
cursor moves to the position in the new text line that is the same as the last remembered
horizontal movement.

• Because there is only an insert operation, and not an append operation, the cursor is allowed
to be one position to the right of the rightmost character in a line.

Lastline Mode The user can quit the editor in lastline mode, and/or save the current bu�er
contents. The allowed commands are a subset of the commands possible in vi, but the syntax
mimics vi. Speci�cally, in lastline mode one can enter:

w �lename to save the bu�er to a �le named �lename

wq �lename to save the bu�er to a �le named �lename and quit after

q to quit without saving. It does not warn that the bu�er is not saved.

Any amount of white space is allowed before the command and between the command and the
�lename. Any characters other than these generate an error message and terminate lastline mode.

Filenames can be any combination of alphanumeric characters and underscores. Punctuation and
whitespace are not allowed. Typing a command such as

: w q

creates a �le named 'q', as would happen in vi.

Letting S denote a space character, F denote a valid �lename character, parentheses for grouping,
and | for alternation, the language of acceptable newline-terminated strings in lastline mode is

S *(w|wS *q)SS *FF *S * | S *qS *

Input Mode There is only an insert operation, which inserts at the cursor position. The
backspace is not implemented. Typing a backspace has no e�ect. Typing characters other than
graphical characters (those found on the keyboard) has unspeci�ed behavior. Graphical characters
are inserted to the left of the cursor. Lines wrap as necessary, and the screen scrolls as needed as
well.

5.2.2.2 Program Design

It would be much easier to write this program if we used the NCurses library, but as we have not yet
covered the NCurses API, we will do it the hard way, the way it was done before NCurses existed.
This will give you an appreciation of NCurses when we cover it in the next chapter. Here, we will
use the ANSI escape sequences that we covered in Chapter 1.

The design challenge in writing this simple text editor is synchronizing the three major objects that
the program must manage:

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

• a behind-the-scenes text bu�er,

• the visible screen, and

• the cursor.

The Bu�er Object The text that the user types must be stored in a bu�er of some kind. There
are many possible ways to organize this bu�er, with time-space trade-o�s associated to each. A
reasonable solution would be to create an array of pointers to the individual lines of the bu�er, each
of which would be a dynamically allocated �xed-size array. The array of pointers could be replaced
by a doubly-linked list of pointers with added programming complexity. The arrays holding the
lines of text could be started smaller and reallocated to larger sizes as the lines grow in size. These
details are not important to us now, as performance is less of a concern than understanding the
principles. Therefore, we take an even simpler approach: the text bu�er is just a large linear array
of characters.

Because vi is a line-oriented editor and cursor movement follows text lines, it is convenient for the
text bu�er to keep track of the starts of each line as well as its length, as well as the number of lines
and the line in which the cursor is currently located and the cursor's o�set from the beginning of
that line. It will also be convenient for the bu�er to store the cursor's position as the o�set from
the beginning of the linear array itself. Thus there is some redundancy in the representation, and
the bu�er object must have functions to synchronize all members. The bu�er object is de�ned as
follows:

typedef struct _buffer

{

char text[BUFSIZ];

int line_len[MAXLINES]; /* lengths of text lines, including newline

characters */

int line_start[MAXLINES]; /* starts of each line */

int num_lines; /* number of text lines in buffer. This

includes lines that have not yet been

terminated with a newline character. It is

the number of newline characters + 1 if the

last character in the buffer is not a

newline. */

int index; /* index of cursor in text buffer */

int size; /* total chars in buffer */

int cur_line; /* current text line, not screen line */

int index_in_cur_line; /* index in current line of cursor */

} Buffer;

The BUFSIZ constant is a system constant, and MAXLINES is de�ned in the application header �le.

The Window Object The window is a display object. The program needs to �nd its dimensions
on start up and store them in the window object. Because the bu�er contents may be larger than
can �t in the window, at any given time, there is a set of text lines that is visible in the window,

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
6

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

and this is a subsequence of the lines in the bu�er. The smallest index of this sequence is stored as a
member of the window to facilitate redrawing the bu�er during scrolling operations and insertions.
The last line index is recalculated rather than storing it. It could also be stored to save running
time. Finally, because the erase character is a terminal setting, its value is stored within the window
object (a window is really a terminal), and will be determined at program startup by querying the
terminal driver. The window object is de�ned by

typedef struct _window

{

unsigned short rows;

unsigned short cols;

int line_at_top;

char erase_char;

} Window;

The window is divided into two regions: the line at the bottom of the screen and everything above
it. The bottom line is reserved by the application for writing status messages and for lastline mode,
which is explained below. The text is never allowed to be written onto the window's last line.

The Cursor The cursor is simple: it is a structure with a row and column index, representing a
position in a two-dimensional array whose upper-left corner is position (0,0). The cursor is de�ned
by

typedef struct _cursor

{

int r;

int c;

} Cursor;

Although the cursor position is in zero-based two-dimensional coordinates, the ANSI escape se-
quences use a 1-based set of coordinates: the upper-left corner of the screen is (1,1). Therefore, the
cursor functions must account for this di�erence. For example, the function to move the cursor to
a new row and column position is

void moveto (i n t l i n e , i n t column)
{

char seq_str [2 0] ;

s p r i n t f (seq_str , "\033[%d;%dH" , l i n e +1, column+1);
wr i t e (1 , seq_str , s t r l e n (seq_str)) ;

}

Some of the cursor functions are relatively simple. When simplevi is in input mode and a character
is typed on the keyboard, three things must happen:

• the character must be inserted into the text bu�er;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
7

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

• the cursor must be advanced to the next insertion point (because echo is controlled by the
application, not by the terminal driver), and

• the window must be redrawn to account for the inserted character.

The function to advance the cursor is in the listing below.

Listing 5.1: advance_cursor

void advance_cursor (Cursor ∗ cursor , Window win , char ch)
{

i f (ch == '\n ') {
cursor−>r++;
cursor−>c = 0 ;

}
e l s e {

cursor−>c++;
i f (cursor−>c == win . c o l s) { /∗ wrap the l i n e ∗/

cursor−>c = 0 ;
cursor−>r++;

}
}

}

The function checks which character was typed. If a newline, it advances the cursor to the next line
at column 0, and if not, it checks whether it has to account for wrapping the line: if the cursor is
at the right margin, it also advances to the next line, column 0.

Inserting a Character When the program is in input mode and the use enters a character to
be inserted into the bu�er, four actions must be taken:

1. physically inserting the character into the bu�er, provided no over�ow occurs,

2. advancing the cursor to the next logical position in the window,

3. redrawing the bu�er contents to the screen, which may cause the cursor's logical position to
change, and

4. physically moving the cursor to the �nal screen position.

The �rst step is implemented by the insert() function in Listing 5.2 below.

Listing 5.2: insert()

i n t i n s e r t (Buf f e r ∗buf , Window win , char c)
{

i n t i ;

i f ((c == '\n ') && (MAXLINES == buf−>num_lines))
re turn OUT_OF_LINES;

e l s e i f (buf−>s i z e == BUFSIZ)
re turn OUT_OF_MEM;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
8

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

i f (c == win . erase_char) {
/∗ Not implemented −− j u s t i gno re i t ∗/
return UNHANDLEDCHAR;

}

f o r (i = buf−>s i z e ; i > buf−>index ; i−−)
buf−>text [i] = buf−>text [i −1] ;

buf−>text [buf−>index] = c ;
buf−>s i z e++;
buf−>index++;
buf−>l ine_len [buf−>cur_l ine]++;

/∗ the f i r s t cha rac t e r s e t s l i n e count to 1 ∗/
i f (buf−>s i z e == 1) buf−>num_lines++;

i f (c == '\n ') {
/∗ Save the l ength o f the l i n e being s p l i t by the newl ine ∗/
i n t temp = buf−>l ine_len [buf−>cur_l ine] ;

/∗ The new length o f cur rent l i n e i s the cur rent index po s i t i o n + 1 . ∗/
buf−>l ine_len [buf−>cur_l ine] = buf−>index_in_cur_line + 1 ;

/∗ I n c r e a s e number o f l i n e s ∗/
buf−>num_lines++;

/∗ Sh i f t a l l l i n e s t a r t s and l eng th s upwards in the array , but
add 1 to the l i n e s t a r t s s i n c e they are 1 charac t e r f u r t h e r
than be f o r e because o f the new newl ine . Do t h i s from the l a s t l i n e
down to cur_l ine+1, which i s the l i n e j u s t a f t e r the s p l i t
l i n e . ∗/

f o r (i = buf−>num_lines−1; i > buf−>cur_l ine+1; i−−) {
buf−>l ine_len [i] = buf−>l ine_len [i −1] ;
buf−>l i n e_s t a r t [i] = buf−>l i n e_s t a r t [i −1]+1;

}
/∗ Set the s t a r t o f the new l i n e c reated here . I t i s the sum of the

s t a r t o f cur_l ine p lus the l ength o f cur_l ine . ∗/
buf−>l i n e_s t a r t [buf−>cur_l ine+1] = buf−>l i n e_s t a r t [buf−>cur_l ine]

+ buf−>l ine_len [buf−>cur_l ine] ;

/∗ advance to new l i n e ∗/
buf−>cur_l ine++;
/∗ The length o f the newly c reated l i n e i s the number

o f cha ra c t e r s that were to the r i gh t o f the cur rent
index po s i t i o n . ∗/

buf−>l ine_len [buf−>cur_l ine] = temp − buf−>l ine_len [buf−>cur_line −1] ;
buf−>index_in_cur_line = 0 ;

}
e l s e i f (i s p r i n t (c)) { /∗ non−newl ine cha rac t e r ∗/

buf−>index_in_cur_line++; // advance index in l i n e
/∗ increment a l l l i n e s t a r t s a f t e r t h i s l i n e ∗/
f o r (i = buf−>cur_l ine+1; i < buf−>num_lines ; i++)

buf−>l i n e_s t a r t [i]++;
}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
9

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

e l s e
re turn UNHANDLEDCHAR;

return 0 ;
}

Skipping some of the details, this function basically shifts all characters upwards in the bu�er and
adjusts the starts of lines for all lines after the current line. It inserts the new character at the index
position, increments the bu�er size, the index position, and the length of the current line. It has to
determine whether the inserted character is a newline character. If so, it has to split the line and
adjust the line starts and line lengths arrays. If not, it checks if it is a printable character, and if
so, adjusts the index in the current line and line starts accordingly.

The second step, advancing the cursor, is shown in Listing 5.1. The third step, redrawing the bu�er,
is handled by the redraw_buffer() function, which is found in Listing 5.3 below.

Listing 5.3: redraw_bu�er()

void redraw_buffer (Buf f e r bu f f e r , Window ∗win , Cursor ∗ curs)
{

i n t i ;
i n t l a s t l i n e ;
i n t l a s t c h a r ;
i n t f i r s t c h a r ;
i n t l ine_of_cursor ;

/∗ I f the cur rent p o s i t i o n in the bu f f e r , bu f f e r . index , i s not with in the
v i s i b l e l i n e s o f the window , the window must be s h i f t e d . The s h i f t might
be up or down , depending on whether index i s above or below the window .

We f i r s t need to get the number o f the l i n e conta in ing pos . Then we
check whether that l i n e i s between win . l ine_at_top and l a s t l i n e .
We need to c a l c u l a t e the d i f f e r e n c e and s h i f t win . l ine_at_top that
d i f f e r e n c e , and r e c a l c u l a t e l a s t l i n e , a f t e r which we can draw the
bu f f e r . ∗/

/∗ Compute the l a s t v i s i b l e complete t ex t l i n e in the bu f f e r ∗/
get_last l ine_in_win (bu f f e r , ∗win , &l a s t l i n e) ;

/∗ Get the index o f the text l i n e conta in ing the i n s e r t i o n po s i t i o n ∗/
l ine_of_cursor = l ine_in_buf f e r (bu f f e r , ∗win , bu f f e r . index) ;

/∗ Check i f the window needs to be s c r o l l e d ∗/
i f (l ine_of_cursor < win−>line_at_top) {

l a s t l i n e −= (win−>line_at_top − l ine_of_cursor) ;
curs−>r += (win−>line_at_top − l ine_of_cursor) ;
win−>line_at_top = l ine_of_cursor ;

}
e l s e i f (l ine_of_cursor > l a s t l i n e) {

win−>line_at_top += (l ine_of_cursor − l a s t l i n e) ;
curs−>r −= (l ine_of_cursor − l a s t l i n e) ;
l a s t l i n e = l ine_of_cursor ;

}

/∗ Get the f i r s t and l a s t cha ra c t e r s o f the v i s i b l e s c r e en . The l a s t c h a r
i s the index o f the l a s t cha rac t e r that can appear in the

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
10

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

window −− the l a s t cha rac t e r in the l a s t v i s i b l e l i n e . The f i r s t char
i s the s t a r t o f the l i n e at the top o f the s c r e en . ∗/

l a s t c h a r = bu f f e r . l i n e_s t a r t [l a s t l i n e] + bu f f e r . l i n e_len [l a s t l i n e] ;
f i r s t c h a r = bu f f e r . l i n e_s t a r t [win−>line_at_top] ;

/∗ Prepare to redraw the window . F i r s t c l e a r the s c r e en . ∗/
wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;

/∗ Do the redraw ∗/
moveto (0 , 0) ;
f o r (i = f i r s t c h a r ; i < l a s t c h a r ; i++)

wr i t e (1 ,& bu f f e r . t ex t [i] , 1) ;
}

The redraw_buffer() function could be more e�cient. It is written for clarity. The problem is
that the line containing the insertion might have grown long enough that it wrapped and part of
it is no longer in the visible region of the window. It could also be that the inserted character is
outside of the visible region because the cursor was at the right margin and the new character is in
the next row of the screen. In these cases, the entire window must be redrawn because the starting
line and ending line have changed. In other cases it is not necessary to redraw the entire window,
but for simplicity, the entire window is always redrawn.

Redrawing the bu�er requires determining whether the current line and the index of the cursor in
that line are outside of the visible region. This is accomplished in a few steps:

1. getting the index of the last visible line in the window,

2. getting the index of the text line containing the insertion position,

3. comparing the line of the insertion point to the top line and last line computed above, and if
out of bounds, resetting the line at the top of the window so that the insertion point is visible,

4. calculating the �rst and last characters of the bu�er that delimit the visible characters in the
window, and

5. moving to the upper left corner and redrawing all characters from the �rst to the last.

Cursor Movement One of the primary challenges in managing the cursor is that, at any given
time, the program must be able to map the cursor position to a position in the text bu�er, and vice
versa.

The program will always make sure that it knows the current line and the current index in the line
as the cursor moves around on the screen. In fact, the cursor movement operations will actually
update these variables, and from those recalculate the cursor position. This needs explanation. Text
lines may be longer than the screen width. When this happens, they wrap onto two or more lines.
In vi, when the cursor is moved upward or downward, it �jumps� over the wrapped lines. In other
words, it moves from one text line to another, not from one screen row to another. Our simplevi
program emulates this behavior. Therefore, when the user presses an arrow key up or down, it will
move to the preceding or following text line. To make this possible, it will increment or decrement
the cur_line member of the bu�er as needed, and possibly adjust the index_in_cur_line variable,
as will be explained below. But this implies that the index member is no longer synchronized with

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
11

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

these values. This only matters when an insertion or other operation has to be performed on the
text in the bu�er at that position. Rather than updating the index each time, the program only
updates it when such an action is needed. The following function does this.

Listing 5.4: update_bu�er_index()

void update_buffer_index (Buf f e r ∗ bu f f e r)
{

i n t t o t a l c h a r s = 0 ;
i n t i = 0 ;

whi l e (i < bu f f e r−>cur_l ine) {
t o t a l c h a r s += buf f e r−>l ine_len [i] ;
i++;

}
t o t a l c h a r s += buf f e r−>index_in_cur_line ;
bu f f e r−>index = to t a l c h a r s ;

}

Similarly, it is also necessary to get the cursor's actual window coordinates when all that is know
are the current line number and the o�set within that line. This is the case, for example, when the
down arrow key is pressed and the cursor must be moved to a new text line. It is possible that the
cursor would actually be below the last visible line. The only way to know this is to calculate its
window coordinates and compare them to the bottom of the screen. The following function is our
means of getting the cursor position.

Listing 5.5: get_cursor_at()

void get_cursor_at (Buf f e r buf , Window win , i n t index , i n t l ineno ,
Cursor ∗ curs)

{
i n t t o ta l_ l i n e s_be f o r e = 0 ;
i n t rows_in_current_text l ine = 0 ;
i n t i ;

/∗ The f i r s t l i n e i s the one at the top o f the window , whose index i s
win . line_at_top , i n i t i a l l y 0 . ∗/

f o r (i = win . l ine_at_top ; i < l i n eno ; i++) {
i f (buf . l i n e_ len [i] < win . c o l s)

t o ta l_ l in e s_be f o r e++;
e l s e

t o ta l_ l in e s_be f o r e += (in t) c e i l ((double) buf . l i n e_len [i] / win . c o l s) ;
}
rows_in_current_text l ine = index /win . c o l s ;

curs−>r = to ta l_ l in e s_be f o r e + rows_in_current_text l ine ;
curs−>c = index − rows_in_current_text l ine ∗ win . c o l s ;

}

There are four movements that the program has to implement: up, down, left, and right. We show
just one of these here. The complete program is in the appendix. The up and down movements are
a bit more complex than left and right.

When the down arrow key is pressed, or the 'j' key, the cursor must be moved to the position in
the text line below at the same o�set relative to the beginning of the line, unless that line is shorter

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
12

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

than the current one. In the latter case, it is moved to the end of the line. The complication is that
this position may be out of view, in which case the text must be scrolled upwards to put it into
view. Therefore, the function to do this must move the cursor logically and then check whether this
logical position is out of view. This requires

1. advancing cur_line to the line below if not on the last line;

2. adjusting index_in_cur_line if the line is too short;

3. getting the index of the last line in the window;

4. getting the actual cursor position;

5. if the cursor is below the last line, calculating by how much scrolling accordingly; and

6. moving the cursor to the new position on the screen and drawing it.

The moveDown() function in the listing below encapsulates this logic.

Listing 5.6: moveDown()

void moveDown(Buf f e r ∗buf , Window ∗win , Cursor ∗ curs)
{

i n t l a s t l i n e ;

i f (buf−>cur_l ine < buf−>num_lines−1) {
buf−>cur_l ine++;
i f (buf−>index_in_cur_line >= buf−>l ine_len [buf−>cur_l ine]) {

buf−>index_in_cur_line = buf−>l ine_len [buf−>cur_l ine]−1;
}

get_last l ine_in_win (∗buf , ∗win , &l a s t l i n e) ;
i f (buf−>cur_l ine > l a s t l i n e) {

win−>line_at_top += buf−>cur_l ine − l a s t l i n e ;
get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line ,

buf−>cur_line , curs) ;
s c r o l l_bu f f e r (∗ buf , ∗win) ;

}
e l s e

get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line ,
buf−>cur_line , curs) ;

moveto (curs−>r , curs−>c) ;
}

}

5.2.2.3 Terminal Interaction

Terminal interaction includes modifying or querying the terminal state, obtaining the window size
and the erase character, and writing various ANSI escape sequences to do things such as clearing
parts of the screen or moving the cursor.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Terminal Support Functions Three functions are used for modifying or querying the terminal
state, as shown in the following program listing.

Listing 5.7: Terminal support functions

void modify_termios (i n t fd , i n t echo , i n t canon)
{

s t r u c t termios cur_tty ;
t c g e t a t t r (fd , &cur_tty) ;

i f (canon)
cur_tty . c_ l f l a g |= ICANON;

e l s e
cur_tty . c_ l f l a g &= ~ICANON;

i f (echo)
cur_tty . c_ l f l a g |= ECHO;

e l s e
cur_tty . c_ l f l a g &= (~ECHO & ~ECHOE) ;

cur_tty . c_ l f l a g &= ~ISIG ;
cur_tty . c_cc [VMIN] = 1 ;
cur_tty . c_cc [VTIME] = 0 ;
t c s e t a t t r (fd , TCSADRAIN, &cur_tty) ;

}

void save_restore_tty (i n t fd , i n t ac t i on)
{

s t a t i c s t r u c t termios o r i g i n a l_ s t a t e ;
s t a t i c i n t r e t r i e v e d = FALSE;

i f (RETRIEVE == act i on){
r e t r i e v e d = TRUE;
t c g e t a t t r (fd , &o r i g i n a l_ s t a t e) ;

}
e l s e i f (r e t r i e v e d && RESTORE == act i on) {

t c s e t a t t r (fd , TCSADRAIN, &o r i g i n a l_ s t a t e) ;
}
e l s e

f p r i n t f (s tde r r , " I l l e g a l a c t i on to save_restore_tty () . \ n ") ;
}

void init_window (i n t fd , Window ∗win)
{

s t r u c t w in s i z e s i z e ;

i f (i o c t l (fd , TIOCGWINSZ, &s i z e) < 0) {
pe r ro r ("TIOCGWINSZ e r r o r ") ;
r e turn ;

}
win−>rows = s i z e . ws_row ;
win−>co l s = s i z e . ws_col ;
win−>line_at_top = 0 ;

}

void get_erase_char (i n t termfd , Window ∗win)
{

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
14

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

s t r u c t termios cur_tty ;
t c g e t a t t r (termfd , &cur_tty) ;

win−>erase_char = cur_tty . c_cc [VERASE] ;
}

modify_termios() either enables or disables echo and canonical mode, and it disables keyboard
signals. It also sets the MIN and TIME line discipline values to 1 and 0 respectively so that the program
reads a single character at a time and does not time-out. save_restore_tty() can be used to save
the current terminal state into a local static variable for later restoration. get_winsize() uses the
ioctl() function to get the current window size when the program starts up. If the window is
resized while the program is running, all bets are o� � it does not handle resizing events.

Since output operations must bypass the C standard I/O library to avoid falling victim to its internal
bu�ering, the program will only use the kernel's write() system call for writing to the screen. A
write to the terminal device will always place the bytes to be written at the current cursor position.
After a write completes, the cursor is advanced to the right of the last character written, unless what
was written was an ANSI escape sequence that does not actually write to the screen. Because the
write() system call needs the length of the string to write, to improve performance, the length of
each escape sequence is hard-coded as a constant. The listing below is the complete set of sequences
used by the program.

Listing 5.8: ANSI escape sequences

/∗ ANSI Escape Sequences and t h e i r l eng th s (f o r speed ∗/
const char CLEAR_DOWN[] = "\033[0 J " ;
const i n t lCLEAR_DOWN = 4 ;
const char CLEAR_RIGHT[] = "\033[0K" ;
const i n t lCLEAR_RIGHT = 4 ;
const char CURSOR_HOME[] = "\033 [1 ; 1H" ;
const i n t lCURSOR_HOME = 6 ;
const char CLEAR_SCREEN[] = "\033[2 J " ;
const i n t lCLEAR_SCREEN = 4 ;
const char CLEAR_LINE [] = "\033[2K" ;
const i n t lCLEAR_LINE = 4 ;
const char RIGHT [] = "\033[1C" ;
const i n t lRIGHT = 4 ;
const char LEFT [] = "\033[1D" ;
const i n t lLEFT = 4 ;
const char BACKSPACE[] = "\033[1D \033 [1D" ;
const i n t lBACKSPACE = 9 ;
/∗ The f o l l ow i n g cannot be dec l a r ed s t a t i c a l l y as the dimensions are unknown ∗/
char PARK[2 0] ; /∗ s t r i n g to park cur so r at lower l e f t ∗/
i n t lPARK; /∗ l ength o f PARK s t r i n g ∗/

The string PARK for parking the cursor in the last line of the window is de�ned dynamically, because
it depends upon the screen size. It is de�ned as follows:

get_winsize(STDIN_FILENO, &rows, &cols);

sprintf(PARK, "\033[%d;1H", rows);

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
15

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.2.2.4 The Main Program

The main function initializes everything necessary and then enters a loop in which it remains until
the user enters a command to quit in lastline mode. Only the main loop is shown in the listing
below.

Listing 5.9: main program loop

whi le (! qu i t) {
i f (in_input_mode) {

i f (read (STDIN_FILENO, &c , 1) > 0) {
i f (c == ESCAPE) {

in_input_mode = 0 ;
write_status_message (" " , curs) ;

}
e l s e {

in_input_mode = hand le_inse r t ion (&buf , &win , &curs , c) ;
i f (in_input_mode == UNHANDLEDCHAR)

in_input_mode = 1 ;
e l s e

write_status_message (INSERT, curs) ;
}

}
}
e l s e {

i f (read (STDIN_FILENO, &c , 1) > 0) {
switch (c) {
case ' i ' :

in_input_mode = 1 ;
park () ;
update_buffer_index(&buf) ;
moveto (curs . r , curs . c) ;
write_status_message (INSERT, curs) ;
break ;

case ' : ' :
in_last l ine_mode = 1 ;
park () ;
wr i t e (1 ,&prompt , 1) ;
s t a tu s = do_lastline_mode (buf , win , curs) ;
i f (s t a tu s >= 0) qu i t = s ta tu s ;
moveto (curs . r , curs . c) ;
break ;

case ' \003 ' :
write_status_message (CTRLC, curs) ;
break ;

case ' \004 ' :
write_status_message (CTRLD, curs) ;

break ;
case ' \010 ' :

write_status_message (CTRLH, curs) ;
break ;

case ' j ' :
moveDown(&buf , &win , &curs) ;
break ;

case 'k ' :

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
16

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

moveUp(&buf , &win , &curs) ;
break ;

case ' l ' :
case ' ' :

moveRight(&buf , &win , &curs) ;
break ;

case 'h ' :
moveLeft(&buf , &win , &curs) ;
break ;

case ESCAPE:
handle_escape_char (&buf , &win , &curs) ;
break ;

d e f au l t :
i f (c == win . erase_char)

moveLeft(&buf , &win , &curs) ;
}

}
}

}

This program has all of the elements of an interactive application that does not involve time. The
remainder of this chapter will introduce features of the UNIX API that are needed for programs
whose state changes with time.

5.2.3 Non-Blocking Input

Changing the state of the terminal itself is preferable to changing the attributes of the open �le
descriptor, because we can exercise more control over it. However, the downside of this is that all
programs that use that terminal will be a�ected by the changes. Usually this is not a problem,
since the program you are writing will be the only foreground process, and no other process will
be reading from the terminal while it is running. However, it is worthwhile to understand how to
exercise some limited control over input through the �le descriptor, using the O_NDELAY �ag (called
O_NONBLOCK in POSIX).

The O_NONBLOCK �ag controls whether reads and writes are blocking or non-blocking. When a read
is blocking, the process that executes the read waits until input is available, and only then does it
continue. This is the semantics that beginning programmers learn. This makes sense; after all, why
would you ever want a program to continue past a read instruction if the read did not yield any
data?

Exercise. Before reading further, try to answer the preceding question.

Non-blocking I/O is a property of open �le connections, not of terminals or devices; when you open a
�le and get a �le descriptor as the return value of the open() call, you can specify in the call that the
�le connection should be non-blocking. In other words, the property of being non-blocking is part of
the process's connection to the �le or the terminal, not the terminal itself. Two di�erent processes
can have the same �le open for reading, one using blocking reads and the other, non-blocking.

Remember that when a connection is established between a process and an input source, a bu�er
is created that holds data from the source on its way to the process. Whether it is a disk �le,
a terminal, a pointing device, or an audio source, there is some temporary storage area used for

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
17

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

bu�ering input. When a process opens a non-blocking connection to an input source, whether it is
a �le or a device, calls to read data from that source retrieve whatever data is in the bu�er at the
time of the call, up to the amount requested in the read request, and return immediately. If the
bu�er is empty, they return immediately with no data. To be clear, in the call

if ((bytesRead = read(fd, dataToProcess, bytesToGet)) > 0)

{/* statement block */}

if the connection is non-blocking and no data is in the bu�er of the �le descriptor fd, then the call
returns immediately with bytesRead == 0 and the statement block will be skipped.

Similarly, a call to the C library function getchar() will return either the character in the front of
the bu�er or, if the bu�er is empty, nothing at all. In either case, getchar() returns immediately,
i.e., in

if ((c = getchar()) != EOF) { /* statement block */ }

if there is no character in the bu�er, getchar() will return EOF, which the program can use to
decide how to proceed.

Non-blocking input should not be confused with asynchronous input. Asynchronous input occurs
when the process makes a call to read data and returns immediately, without waiting for the data
to be ready. The read() call is executed by a separate process, and as soon as the data are available
for it, that process performs the I/O and �lls the bu�er passed to it by the one calling read(). This
is called asynchronous input because the caller does not synchronize with the process running the
read() call; they proceed independently once the call is made. Asynchronous input is useful when
you may not need the data right away.

Non-blocking input is useful when the lack of input itself is a signi�cant condition to be identi�ed
by the program. For example, it might indicate that a user has left the terminal and is no longer
responding, or that a connection to a remote host has been broken, or that a pipe is empty. It may
also imply that the user is choosing to not supply input because supplying input may mean making
something happen that the user does not want to happen, as in a video game. Very often the
process requesting the input has other work to do and it can simply check later whether the input is
available. For this reason, non-blocking reads are usually placed inside loops where the condition is
tested and an appropriate action can be taken. In most programs that use non-blocking input, the
state of the program is changing without the user's intervention. This might be because animation
is taking place, or a computation is being performed, or something else entirely.

The following listing is of a program that uses non-blocking input and pretends to do a simple ani-
mation. It draws �dots� on the screen, nothing more. Because it uses the same modify_termios(),
save_restore_tty() and get_winsize() functions from the simplevi.c program, their de�nitions
are omitted. It uses a function to put a �le descriptor into non-blocking mode, set_non_block().

Listing 5.10: nonblockdemo.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <s t r i n g . h>
#inc lude <f c n t l . h>

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
18

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

#inc lude <termios . h>
#inc lude <sys / s t a t . h>
#i f n d e f TIOCGWINSZ
#inc lude <sys / i o c t l . h>
#end i f

#de f i n e RETRIEVE 1 /∗ ac t i on f o r set_tty ∗/
#de f i n e RESTORE 2 /∗ ac t i on f o r set_tty ∗/

// Def ined e l s ewhere :
void modify_termios (i n t fd , i n t echo , i n t canon) ;
void save_restore_tty (i n t fd , i n t ac t i on) ;
void get_wins ize (i n t fd , i n t ∗rows , i n t ∗ c o l s) ;

void set_non_block (i n t fd)
{

i n t f l a g s e t ;

f l a g s e t = f c n t l (fd , F_GETFL) ;
f l a g s e t |= O_NONBLOCK;
f c n t l (fd , F_SETFL, f l a g s e t) ;

}

i n t main (i n t argc , char ∗argv [])
{

char ch ; // s t o r e s user ' s char
char per iod = ' . ' ;
s i z e_t bytecount ;
i n t count = 0 ;
i n t done = 0 ; /∗ to c on t r o l when to stop loop ∗/
i n t pause = 0 ; /∗ to c on t r o l pausing o f output ∗/
char PARK[2 0] ; /∗ ANSI escape sequence f o r parking cur so r ∗/
i n t numrows ; /∗ number o f rows in window ∗/
i n t numcols ; /∗ number o f columns in window ∗/
const char CURSOR_HOME[] = "\033 [1 ; 1H" ;
const char CLEAR_SCREEN[] = "\033[2 J " ;
const char SAVE_CURSOR[] = "\033[s " ;
const char REST_CURSOR[] = "\033[u " ;
const char MENU[] = "Type q to qu i t or p to pause or r to resume . " ;
char dots [2 0] ;

/∗ Check whether input or output has been r e d i r e c t e d ∗/
i f (! i s a t t y (0) | | ! i s a t t y (1)) {

f p r i n t f (s tde r r , " Output has been r e d i r e c t e d ! \ n ") ;
e x i t (EXIT_FAILURE) ;

}

/∗ Save the o r i g i n a l t ty s t a t e ∗/
save_restore_tty (STDIN_FILENO, RETRIEVE) ;

/∗ Modify the te rmina l −
turn o f f echo , keybd s i g s , and canon i ca l mode ∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
19

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

modify_termios (STDIN_FILENO, 0 , 0) ;

/∗ Turn o f f b lock ing mode ∗/
set_non_block (STDIN_FILENO) ;

/∗ Get the window ' s s i z e ∗/
get_window_size (STDIN_FILENO, &numrows , &numcols) ;

/∗ Create s t r i n g to park cur so r ∗/
s p r i n t f (PARK, "\033[%d ; 1H" , numrows+1);

/∗ Clear the s c r e en and put cur so r in upper l e f t corner ∗/
wr i t e (STDOUT_FILENO,CLEAR_SCREEN, s t r l e n (CLEAR_SCREEN)) ;
wr i t e (STDOUT_FILENO,CURSOR_HOME, s t r l e n (CURSOR_HOME)) ;

/∗ Star t drawing . Stop when the s c r e en i s f u l l ∗/
whi l e (! done) {

i f (! pause) {
count++;
/∗ I s s c r e en f u l l except f o r bottom row? ∗/
i f (count > (numcols ∗ (numrows−1))) {

pause = 1 ;
count−−;

}
e l s e

wr i t e (STDOUT_FILENO, &period , 1) ;
}
us l e ep (10000) ; /∗ delay a b i t ∗/
s p r i n t f (dots , " dots : %d " , count) ;

/∗ Save the cursor , park i t , wr i t e the menu prompt ∗/
wr i t e (STDOUT_FILENO,SAVE_CURSOR, s t r l e n (SAVE_CURSOR)) ;
wr i t e (STDOUT_FILENO, PARK, s t r l e n (PARK)) ;
wr i t e (STDOUT_FILENO, MENU, s t r l e n (MENU)) ;
wr i t e (STDOUT_FILENO, dots , s t r l e n (dots)) ;
/∗ Do the read . I f nothing was typed , do nothing ∗/
i f ((bytecount = read (STDIN_FILENO, &ch , 1)) > 0) {

i f (ch == 'q ')
done = 1 ;

e l s e i f (ch == 'p ')
pause = 1 ;

e l s e i f (ch == ' r ')
pause = 0 ;

}
/∗ Restore the cur so r so the next dot f o l l ow s the prev ious ∗/
wr i t e (STDOUT_FILENO,REST_CURSOR, s t r l e n (REST_CURSOR)) ;

}
/∗ Cleanup −− f l u s h queue , c l e a r the screen , and r e s t o r e te rmina l ∗/
t c f l u s h (STDIN_FILENO,TCIFLUSH) ;
wr i t e (1 ,CLEAR_SCREEN, s t r l e n (CLEAR_SCREEN)) ;
wr i t e (1 ,CURSOR_HOME, s t r l e n (CURSOR_HOME)) ;
save_restore_tty (STDIN_FILENO, RESTORE) ;
re turn 0 ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

The program has a loop of the form

while (!done) {

/* actual work here */

if ((bytecount = read(STDIN_FILENO, &ch, 1)) > 0) {

if (ch == 'q')

done = 1;

else if (ch == 'p')

pause = 1;

else if (ch == 'r')

pause = 0;

}

}

This is the second paradigm shown in Section 5.2.1. The user's input has one of three possible
e�ects: (1) entering 'q' terminates the loop, (2) entering 'p' allows the loop to continue but stops
output, giving the illusion that the program is paused, and (3) entering 'r' resumes the output
if it is paused and has no e�ect otherwise. This is a very ine�cient method of pausing of course,
because the program is gobbling up CPU cycles while it is pretending to do nothing. However, we
do not know enough as yet to do otherwise.

The part of the loop with the comment labeled �actual work here� is the part in which it

1. increments the period count and checks how many periods have been written so far,

2. delays a bit,

3. if still room for another period, writes a period, and

4. moves the cursor to the bottom row, writing the prompt and a count of the periods.

This section of the code is a form of animation � it is changing the state of the screen as a function
of time. In this case, the timing is achieved by pausing a constant amount of time between redraws.
This is a simple, and ine�cient, form of animation. Later we will see that there are better means
of achieving this.

5.2.4 Allowing Time-Outs

Sometimes we would like to write a program that has time-outs: if the user does not respond within
a certain amount of time, it will take this condition to be a signi�cant event in itself. Many programs
have some kind of time-out or delay feature like this, so that if the user does not respond within a
certain amount of time, the program will either terminate or take some other default action.

We can add a time-out feature to a program by setting MIN to 0 and TIME to the number of deci-
seconds we would like it to wait before it decides that there is no input to wait for. For the sake
of curiosity, though, we will design a program that will allow us to set the MIN and TIME terminal
attributes to any values we choose, so that we can see how it behaves with di�erent values.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
21

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.2.5 A Test Program

We will build a program in which we can test the e�ects of changing both the terminal driver's
attributes and the open connection's attributes. The main program will be a test driver that allows
the user to control the state of the terminal and terminal connection by various command line
options, and repeatedly runs a simple function, which we will call get_response(), that reads user
input in the given state of the terminal and connection. The main program will have a few bells
and whistles besides.

The program will have separate functions for controlling the state of the control terminal and for
changing the attributes of the �le connection to the terminal device. The main program will have
a loop to allow us to experiment with the get_response() function until we are satis�ed that we
understand how it behaves under the given settings. There are several pieces to the program, which
we present in a bottom-up approach.

First, we combine the save_restore_tty() and set_non_block() functions into a single function
that saves and restores both the terminal settings and the �le descriptor �ags. It uses the same
macros as before:

void save_restore_tty (i n t fd , i n t act ion , s t r u c t termios ∗copy)
{

s t a t i c s t r u c t termios o r i g i n a l_ s t a t e ;
s t a t i c i n t o r i g i n a l_ f l a g s = −1;
s t a t i c i n t r e t r i e v e d = FALSE;

i f (a c t i on == RETRIEVE){
r e t r i e v e d = TRUE;
t c g e t a t t r (fd , &o r i g i n a l_ s t a t e) ;
o r i g i n a l_ f l a g s = f c n t l (fd , F_GETFL) ;
i f (copy != NULL)

∗copy = o r i g i n a l_ s t a t e ;
}
e l s e i f (r e t r i e v e d && act i on == RESTORE) {

t c s e t a t t r (fd , TCSADRAIN, &o r i g i n a l_ s t a t e) ;
f c n t l (fd , F_SETFL, o r i g i n a l_ f l a g s) ;

}
e l s e

f p r i n t f (s tde r r , "Bad ac t i on to save_restore_tty () . \ n ") ;
}

We will change our modify_termios(), function so that it can be given a structure whose members
describe the terminal settings:

typedef struct tty_opts_tag {

int min; /* value to assign to MIN */

int time; /* value to assign to TIME */

int echo; /* value to assign to echo [0|1] */

int canon; /* value to assign to canon [0|1] */

} tty_opts;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
22

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

modify_termios() will options in the tty_opts parameter that is passed to it to the given termios

structure.

void modify_termios (s t r u c t termios ∗cur_tty , tty_opts t s)
{

i f (t s . canon)
cur_tty−>c_l f l a g |= ICANON;

e l s e
cur_tty−>c_l f l a g &= ~ICANON;

i f (t s . echo)
cur_tty−>c_l f l a g |= ECHO;

e l s e
cur_tty−>c_l f l a g &= ~ECHO;

cur_tty−>c_cc [VMIN] = t s . min ;
cur_tty−>c_cc [VTIME] = t s . time ;

}

The second, apply_termios_settings(), applies the values in the termios structure to the termi-
nal line associated to the given �le descriptor (which should be standard input.)

void apply_termios_sett ings (i n t fd , s t r u c t termios cur_tty)
{

t c s e t a t t r (fd , TCSANOW, &cur_tty) ;
}

The set_non_block() function is the same as the one we used above and is omitted.

The get_response() function will prompt the user to type a character and will return a value that
indicates what the user typed. For simplicity, it will ask for yes or no answers. It prints a question
on the screen and gives the user a chance to give a valid response. If the user types a valid response
or max_tries attempts were made, it returns.

i n t get_response (FILE∗ fp , ui_params uip)
{

i n t input , n ;
unsigned char c ;
time_t time0 , time_now ;

time(&time0) ;
whi l e (TRUE){

p r i n t f ("%s (y/n)?" , uip . prompt) ;
f f l u s h (stdout) ;
i f (! uip . i s b l o c k i n g)

s l e e p (uip . s l e ep t ime) ;
i f ((n = read (f i l e n o (fp) , &c , 1)) > 0) {

t c f l u s h (f i l e n o (fp) , TCIFLUSH) ;
input = to lower (c) ;
i f (input == 'y ' | | input == 'n ') {

re turn input ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
23

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

}
e l s e {

p r i n t f ("\ n Inva l id input : %c\n" , input) ;
cont inue ;

}
}
time(&time_now) ;
p r i n t f ("\ nTimeout wai t ing f o r input : %d s e c s e lapsed , "

" %d timeouts l e f t \n" ,
(i n t) (time_now− time0) , uip . maxtr ies) ;

i f (uip . maxtries−− == 0) {
p r i n t f ("\nTime i s up . \ n ") ;
r e turn 0 ;

}
}

}

Comments

• The fflush() call �ushes the bu�ers associated with the �le stream passed to it. The C
Standard I/O Library provides bu�ered I/O for �le streams. When a program is started,
by default, the streams stdin, stdout, and stderr are line bu�ered. This means that the
characters are transmitted to the terminal only when a newline is placed onto the stream.
Since functions such as printf(), puts(), and the others that act on stdout, act on �le
streams, they are line bu�ered. The preceding printf() call

printf("%s (y/n)?", uip.prompt);

sends a string to stdout without a terminated newline and therefore this string will not
appear immediately. To force the characters to be delivered to the terminal device, we use
fflush(stdout), which empties the bu�er. If we comment out the fflush() call, the prompt
will not appear on the screen until after a read() runs.

Note that the bu�ering provided for streams is independent of the bu�ering done by the
terminal within the line discipline. Even if you put the terminal into non-canonical mode, if
you use the higher-level C library functions, C will continue to line bu�er. You must use the
lower-level �le descriptor operations to avoid the bu�ering.

• The call to �ush the terminal's input queue, tcflush(), is needed in case the program is run
in canonical mode and input is bu�ered. In this case the user has to enter a newline before the
terminal will deliver the characters to the read() call, and get_response() needs to remove
that newline character, otherwise it will be used as the next input character when it is called
again.

• get_response() calls sleep() to block itself for the number of seconds given by uip.sleeptime.
The sleep() function's prototype is

unsigned int sleep(unsigned int seconds);

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
24

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

The process will sleep until either the given time has elapsed or it receives a signal that it does
not ignore. (Signals will be covered soon.) This gives the user a chance to type a response in
case non-blocking input is in e�ect. Without this delay, the read() call would return faster
than the user could blink an eye. The delay is not needed when input is blocking. There are
alternatives to sleep() with �ner granularity, such as usleep() and nanosleep().

• Lastly, get_response() computes the total time elapsed since the original prompt was dis-
played by calling the time() function initially and each time that the user fails to enter any
character before time runs out, and computing the di�erence in seconds.

The main program, with includes and a few other utilities omitted, follows. This is term_demo1.c.

Listing 5.11: term_demo1.c

#de f i n e PROMPT "Do you want to cont inue ?"
#de f i n e MAX_TRIES 3 // max t r i e s
#de f i n e SLEEPTIME_DEFAULT 2 // de lay a f t e r prompt
#de f i n e BEEP putchar ('\ a ') // a l e r t user
#de f i n e RETRIEVE 1 // ac t i on f o r save_res tore
#de f i n e RESTORE 2 // ac t i on f o r save_res tore
#de f i n e FALSE 0
#de f i n e TRUE 1

in t main (i n t argc , char ∗ argv [])
{

i n t re sponse ;
tty_opts t tyopt s = {1 ,0 , 1 , 1} ;
ui_params ui_parameters = {

SLEEPTIME_DEFAULT, TRUE,
MAX_TRIES, PROMPT

} ;
i n t f f l a g s = 0 ;
s t r u c t termios t t y i n f o ;
i n t fd ;
FILE∗ fp ;

get_options(&argc , &argv , &f f l a g s , &ttyopts ,
&(ui_parameters . s l e ep t ime)) ;

i f (! i s a t t y (0) | | ! i s a t t y (1))
e x i t (1) ;

fp = s td in ;

save_restore_tty (f i l e n o (fp) , RETRIEVE, &t t y i n f o) ;
modify_termios (&t ty in f o , t tyopt s) ;
apply_termios_sett ings (f i l e n o (fp) , t t y i n f o) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
25

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

// I f f f l a g s != 0 then the O_NONBLOCK f l a g i s s e t on fp
i f (f f l a g s) {

ui_parameters . i s b l o c k i n g = FALSE;
set_non_blocking_mode (f i l e n o (fp) , f f l a g s) ;

}
whi l e (TRUE) {

response = get_response (fp , ui_parameters) ;
i f (r e sponse) {

p r i n t f ("\nMain : Response from user = %c\n" ,
re sponse) ;

i f ('n ' == response)
break ;

}
e l s e

p r i n t f ("\nMain : No response from user \n") ;
}
save_res tore (f i l e n o (fp) , RESTORE, NULL) ;
t c f l u s h (0 ,TCIFLUSH) ;
re turn response ;

}

Comments

1. One problem with the program as it stands is that it will not respond to any key presses until
it wakes up from its sleep. You cannot kick it into waking up. It will sleep for the speci�ed
time, come hell or high water. This means that a user with a fast response time will be
unhappy with this solution. It is a one-size-�ts-all solution to making a program responsive
to user response rates. It is, in essence, a polling solution because it just repeatedly checks
in on the user. An alternative is to somehow make the program sleep until the user actually
does something.

2. Another problem with the program is that if it is terminated abnormally, as when the user
types Ctrl-C, it will not have a chance to restore the terminal to its original settings. If the
program has turned o� canonical input and echo, for example, and it is killed before reaching
the instruction in the main program to restore the terminal, then when the shell resumes
execution upon the program's untimely death, the terminal will still be in non-canonical
mode with no echo. Fortunately for present-day UNIX programmers, modern shells such as
bash and tcsh automatically reset the terminal when processes invoked from the shell are
killed, so these users will not see this happen.

3. However, even with the shell's ability to reset the terminal, it is still not necessarily immune
to the problem that occurs when the program turns on non-blocking I/O2. If the program
turns on non-blocking reads and is subsequently killed, there is a good possibility that the
shell will be killed too. This is because, when a program is invoked from the shell, it shares
the �le descriptors of its parent shell. In other words, �le descriptor 0 in the program points

2Some shells appear to have �xed this �bug� as well. If a spawned process leaves the O_NONBLOCK �ag on standard

input, they clear it.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
26

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

to the same �le structure in the kernel as it does in the shell. Suppose that the program
turns on the O_NONBLOCK �ag on the standard input connection. It is actually modifying the
connection that its parent, i.e., the shell, uses as well. In fact, this standard input connection
is shared by all related processes � siblings, cousins, and so on. Any process that is sharing
this �le connection can potentially make changes that a�ect all other processes that use this
terminal. Once the changes are made, unless they are undone before the process terminates,
the shell's connection has those changed properties.

Now think about the shell for a moment. A shell is basically running a loop of the form

while (not end of input) {

display the shell prompt

read the user's command line

carry out the instruction

}

Thus, if the program turns on non-blocking reads and is killed before turning it o�, when the
shell resumes, it executes a read command. Usually the shell is in blocked input mode, so
when it tries to read input but none is there, it enters a blocked state waiting for the user to
press the Enter key, which sends input to the shell process. Since non-blocking input is still
on, instead of waiting for the user's input, it receives an EOF from the function call that it uses
to retrieve the input. This EOF may cause the shell itself to terminate because most shells are
killed by the EOF character. You should set ignoreeof to prevent this. In bash, you add the
line

set -o ignoreeof

in your .bashrc to do this. Anyway, the result is that your shell is killed, and if this is a login
shell, you will be logged out. On my host machine, bash gets caught in a segmentation fault,
which should not happen.

4. The problem with non-blocking reads causing the shell to exit can also be solved by opening
a new �le connection to the terminal instead of using standard input. In the demo program,
explore the e�ect of replacing the line

fp = stdin;

by

fp = fopen(ctermid(NULL), "r");

5.3 Signals

Signals are, as Richard Stevens once put it, software interrupts. They are a mechanism for handling
asynchronous events, such as when a user types Ctrl-C at a terminal. Most non-trivial applications
need to handle signals. In this section we provide an overview of signals, including what they are,
how they are generated, how they are named, and how processes can deal with them.

From a strictly technical point of view, a signal is a message that has a type but does not have
content. Messages are usually de�ned to be containers for data. Signals are not containers. Signals

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
27

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

outside of the computer are things like tra�c lights, hand gestures that mean "please stop, taxi
driver" or "give me the check", alarm clock rings, or warning lights like "you're about to run out of
gas". They do not have contents. It is enough that they have identity, so a particular signal type
has well-de�ned meaning. When a combatant raises a white �ag, the enemy knows that this signal
means "I give up." In UNIX, a signal is simply an integer with a mnemonic name. For example,
SIGINT is the interrupt signal.

5.3.1 Typing Ctrl-C at a Terminal

When you type a Ctrl-C, the e�ect is to terminate the currently running process. Why? When
you type the Ctrl-C, the character code for it is sent by hardware and then, within the kernel, to
the terminal's device driver. The device driver checks the character code and sees that it matches
the INTR code3. Since it knows this is a control character that is supposed to cause delivery of an
interrupt signal, it checks whether the isig attribute is set for the terminal. If isig is set, then
the corresponding signal must be delivered, which is SIGINT, so it calls the signal subsystem of the
kernel to notify it to send the SIGINT signal to all processes whose control terminal4 is the one that
received the Ctrl-C. If any of these processes has not explicitly noti�ed the kernel of how it wants
to handle this signal, it will terminate upon receipt of the signal, because by default, processes are
killed if they do not catch SIGINT. Soon we shall see that a process can declare what the disposition
of a delivered signal should be while it is running.

5.3.2 Sources of Signals

All signals are sent by the kernel to processes. There is no other way for a process to receive a
signal; the kernel is like the central signal processing station inside the machine. The kernel will
send a signal to one or more processes if it receives a request to do so. Requests can come from a
few di�erent types of sources.

The terminal A user can type a key combination that causes the terminal driver to ask the kernel
to send a signal. This is an asynchronous signal, since it can arrive at a process at
any time, independent of what the process might be doing. Examples include Ctrl-C,
Ctrl-Z, Ctrl-S.

Hardware Hardware exceptions can generate signals. The kernel detects when the exception occurs
and sends a signal to the o�ending process. These may be synchronous or asynchronous.
Synchronous events are things such as �oating-point exceptions, illegal instructions, ad-
dressing exceptions (such as attempts to access addresses outside of the process's address
space), and other events generally caused by the process itself. They are synchronous be-
cause if the process is run again, they will occur again at the same point in the process's
execution. Asynchronous events are things like power loss and terminal hang-ups.

Software Software conditions can generate signals when something noteworthy happens. This
can happen when out-of-band data arrives over a network connection, or when a process
writes to a pipe after the reader of the pipe has terminated, or when an alarm clock set
by the process expires.

3In SunOS it is INTR. On other systems, it might be VINTR.
4The operating system keeps track of which processes are attached to which terminals.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
28

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Processes Processes themselves can request the kernel to send signals to processes, even them-
selves. This is not so strange; an alarm clock is a way for you to send a signal to yourself
in the future; you set the alarm and wait for it to signal you. Similarly, a process can
ask the kernel to send a wake-up call to itself at some future time. A process can also
ask the kernel to send a signal to other processes to which it has permission to send
signals. For ordinary user processes, these include any processes with the same real or
e�ective user-id.

5.3.3 Signal Types

UNIX systems de�ne signals in the header �le <signal.h>. More accurately, the header �le
<signal.h> includes the header �le that contains the signal de�nitions. Di�erent UNIX systems
store this �le in di�erent places. In Linux, the �le <bits/signum.h> is where the signals are de�ned.
The kernel includes this header �le, but user level program are supposed to include <signal.h>.
The idea is to keep separate headers for the kernel and the user-level programs.

The exact set of signals varies from one system to another, but some of them are standard across
all systems. Signal names are just names for small integers such as SIGINT, SIGKILL, SIGHUP, and
SIGCHLD. All names begin with the pre�x SIG. SIGHUP is the hang-up signal. It is sent to a process
when its control terminal has been disconnected. SIGCHLD is the signal sent to a parent by the
kernel when it detects that one of its child processes has terminated. There are typically about 30
to 35 di�erent signals de�ned in any UNIX system. The list of signals has changed over the years.
The �rst 30 signals listed below are found in Linux and Solaris 9 ; the last 4 only in Solaris 9. The
constant NSIG is the the total number of signals de�ned. Since the signal numbers are allocated
consecutively, NSIG is also one greater than the largest de�ned signal number.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
29

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Name Value Default Event Note Category

SIGHUP 1 Exit Hangup Termination
SIGINT 2 Exit Interrupt Termination
SIGQUIT 3 Core Quit Termination
SIGILL 4 Core Illegal Instruction Program Error
SIGTRAP 5 Core Trace or Breakpoint Trap Program Error
SIGABRT 6 Core Abort Program Error
SIGEMT 7 Core Emulation Trap Program Error
SIGFPE 8 Core Arithmetic Exception Program Error
SIGKILL 9 Exit Killed Termination
SIGBUS 10 Core Bus Error 1 Program Error
SIGSEGV 11 Core Segmentation Fault Program Error
SIGSYS 12 Core Bad System Call 1 Program Error
SIGPIPE 13 Exit Broken Pipe Operation Error
SIGALRM 14 Exit Alarm Clock Alarm
SIGTERM 15 Exit Terminated Termination
SIGUSR1 16 Exit User Signal 1 1 Miscellaneous
SIGUSR2 17 Exit User Signal 2 1 Miscellaneous
SIGCHLD 18 Ignore Child Status Changed 1 Job Control
SIGPWR 19 Ignore Power Fail or Restart Hardware
SIGURG 21 Ignore Urgent Socket Condition Asynchronous I/O
SIGPOLL 22 Exit Pollable Event Asynchronous I/O
SIGSTOP 23 Stop Stopped (signal) 1 Job Control
SIGTSTP 24 Stop Stopped (user) 1 Job Control
SIGCONT 25 Ignore Continued 1 Job Control
SIGTTIN 26 Stop Stopped (tty input) 1 Job Control
SIGTTOU 27 Stop Stopped (tty output 1 Job Control
SIGVTALRM 28 Exit Virtual Timer Expired 1 Alarm
SIGPROF 29 Exit Pro�ling Timer Expired 1 Alarm
SIGXCPU 30 Core CPU time limit exceeded 1 Operation Error
SIGXFSZ 31 Core File size limit exceeded 1 Operation Error
SIGWINCH 20 Ignore Window Size Change 2 Miscellaneous
SIGWAITING 32 Ignore Concurrency signal 3 Miscellaneous
SIGLWP 33 Ignore Inter-LWP signal 3 Miscellaneous
SIGFREEZE 34 Ignore Check point Freeze 3 Miscellaneous
SIGTHAW 35 Ignore Check point Thaw 3 Miscellaneous

Notes

1. In Linux the numerical value of the signal is architecture-dependent.

2. This is only found in Sun OS and BSD.

3. These are in Solaris 9.

The above list has four columns. The �rst is the mnemonic name for the signal, i.e., the name that
can be used in a program. The second is the integer value, which you do not need to know. The
third is the default action that happens to a process. For example, SIGCHLD is ignored by default,

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
30

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

SIGSTOP causes the program to stop by default, and SIGINT causes the process to terminate. The
last column indicates the cause or condition that leads to this signal.

5.3.4 Sending Signals

In UNIX, the kernel can send a signal to a process when some hardware error condition arises. For
example, if a program attempts to execute an illegal instruction, the kernel will receive the hardware
noti�cation and will send the SIGILL (illegal instruction signal) to the o�ending process. A process
can also send a signal to one or more processes (or even itself) by using the kill() system call.
The form of the call is

int kill(int processid, int signal);

The �rst parameter stores a means to specify the process id of the process to receive the signal.
The second parameter is the kind of signal to send. In the simplest case,

kill(942, SIGTERM);

sends the SIGTERM signal to the process whose process-id is 942. A process cannot send a signal to
another process if they do not share the same real or e�ective user-id1. If a process does not have
permission to issue the kill call, kill() returns �1.

processid can be 0, -1, or a negative number, and it means something di�erent in each case. If
processid is 0, the signal will be sent to all processes in the same process group, whereas if it is �1,
and the sender is not the superuser, it is sent to all processes for which it has permission to send
signals, which are those processes with the same real or e�ective user-id. If processid < -1, it is
sent to all processes in the process group with id -processid.

A process can also send a signal to itself using

int raise(int signal);

which is equivalent to

kill(getpid(), signal);

The call to raise() will return only when the process has handled the signal.

5.3.5 Signal Generation and Delivery

UNIX systems generally distinguish between the generation of a signal and its delivery. According
to the Open Group Base Speci�cation Issue 6 (IEEE Std 1003.1),

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
31

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

"A signal is said to be 'generated' for (or sent to) a process or thread when the
event that causes the signal �rst occurs. Examples of such events include detection
of hardware faults, timer expiration, signals generated via the sigevent structure and
terminal activity, as well as invocations of the kill() and sigqueue() functions. In
some circumstances, the same event generates signals for multiple processes.

"A signal is delivered to a process when the appropriate action for that process and
signal is taken."

What this means is that delivery takes place when the process receives the signal and responds by
either

• ignoring it,

• taking the default action, or

• executing a signal handler for it.

Signal handling is described below. The point to remember now is that from the moment that a
signal is generated for a process until the moment that the signal is delivered, the signal is pending.
Pending signals are managed by the operating system5.

5.3.6 Signal Handling

A process does not have to accept the default action caused by a signal. It can choose to respond
di�erently to all signals except for SIGKILL and SIGSTOP. These signals always terminate the process.
To handle a signal, the programmer de�nes a function called a signal handler. The signal handler
is executed when the signal is received, provided that it has been installed.

The program noti�es the operating system that it has a handler for a speci�c signal by executing
a system call to install the handler. The original system call for installing a signal handler was the
signal() system call. The signal() system call was unreliable because it was possible to miss
signals when using it. It was replaced by a reliable signal installing call named sigaction(). We
will explore the sigaction() call later. For now, we start with the signal() system call, partly
because it is an easier one to use, and partly so that you understand its weaknesses. Once you do,
you should avoid using it.

The signal() call has the form

signal(signal_number, handler_action)

The �rst parameter is the number of a signal, but you should always use its mnemonic name such
as SIGINT or SIGQUIT. The second parameter is one of the following:

SIG_DFL Take the default action, which is usually to terminate the process.

SIG_IGN Ignore the signal completely and continue.

user-de�ned function Address of a user-de�ned function
5This discussion of signals overlooks the complexity entailed because of threads and multi-threaded processes.

Until we discuss threads in general, we have to overlook this topic. But you should bear in mind that the operating

system has to make decisions when signals are generated as to whether they are to be sent to every thread in a process

or just to a single thread in particular, and that certain signals must always be sent to one choice or the other.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
32

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Examples

The following program, signal_demo1.c, shows how signal handlers for Ctrl-C (SIGINT) and
Ctrl-\ (SIGQUIT) are installed.

Listing 5.12: signal_demo1.c

#inc lude <s td i o . h>
#inc lude <s i g n a l . h>

void catch1 (i n t signum)
{

p r i n t f ("You can do be t t e r than that ! \ n ") ;
}

void catch2 (i n t signum)
{

p r i n t f (" I 'm no qu i t t e r ! \ n ") ;
}

i n t main ()
{

i n t i ;

s i g n a l (SIGINT , catch1) ;
s i g n a l (SIGQUIT , catch2) ;
f o r (i = 20 ; i > 0 ; i−−) {

p r i n t f ("Try to k i l l me with ^C or ^\\.\n ") ;
s l e e p (1) ;

}
re turn 0 ;

}

The call signal(signum, f) installs f() as the signal handler for the signal signum. When
signal() is executed, f() is installed. Until that point, f() is not installed. When you run
signal_demo1 and enter a Ctrl-C, the SIGINT signal is sent to the process executing signal_demo1;
as a result, the handler f() runs, and when it terminates, the program resumes execution. In
signal_demo1.c, the only action taken by either handler is to print a message on the screen, simply
to show that the function was executed.

The next program, signal_demo2.c, is almost the same as signal_demo1.c with one exception:
SIGINT and SIGQUIT are ignored by calling signal() with SIG_IGN as the second argument.

#inc lude <s td i o . h>
#inc lude <s i g n a l . h>

in t main ()
{

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
33

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

s i g n a l (SIGINT , SIG_IGN) ; // i gnor e Ctrl−C
s i g n a l (SIGQUIT , SIG_IGN) ; // i gnor e Ctrl−\

f o r (i = 20 ; i > 0 ; i−−) {
p r i n t f ("Try to k i l l me with ^C or ^\\.\n ") ;
s l e e p (1) ;

}
re turn 0 ;

}

5.3.7 Putting It Together

We revise term_demo1.c so that it handles Ctrl-C and Ctrl-\ interrupts (whether from the key-
board or sent via a kill() from another process.) This program is term_demo2.c. The listing
below shows only the changed portion of the code.

. . . .
#inc lude <s i g n a l . h>
. . . . (sn ip)

i f (f f l a g s) {
ui_parameters . i s b l o c k i n g = FALSE;
set_nodelay (f i l e n o (fp) , f f l a g s) ;

}

s i g n a l (SIGINT , inter rupt_handler) ;
s i g n a l (SIGQUIT, inter rupt_handler) ;

whi l e (TRUE) {
response = get_response (fp , ui_parameters) ;

. . . . (sn ip)

char ∗ signame (i n t s i gno)
{

s t a t i c char name [1 6] ;
switch (s i gno) {
case SIGINT :

s t r cpy (name , "SIGINT") ;
break ;

case SIGQUIT :
s t r cpy (name , "SIGQUIT") ;

}
re turn name ;

}

void inter rupt_handler (i n t signum)

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
34

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

{
p r i n t f (" Ex i t ing with s i g n a l %s \n" , signame (signum)) ;
save_res tore (f i l e n o (s td in) , RESTORE, NULL) ;
e x i t (2) ;

}

The major changes are that the signal() function is used to install handlers for SIGINT and
SIGQUIT. In this program they share the same handler, named interrupt_handler(). This handler
prints a message on the standard output and then restores the termios structure's �ags and the
�le status �ags to what they were before the program was run.

5.3.8 Weaknesses of the Signal Mechanism

Signals in this form do not carry any information other than their particular values. Therefore, they
are of limited use. They were never intended to be a robust form of communication, and they are
still not completely reliable. The early form of signal handling using the signal() system call was
very unreliable. While a process was in the midst of catching a signal, it was unable to detect the
arrival of another signal of the same type; any new signals of that type were lost. This means that
if two signals of the same type were sent in rapid succession to a process, the second might be lost.
Later versions of the signal() function in BSD and in SVR corrected this problem in di�erent ways,
so that it now has at least two di�erent behaviors. The modern version in Linux 2.6 combines the
semantics of each. It is best to avoid the signal() call for that reason.

5.3.9 Signal Handling The "Right" Way

Signals are a primitive form of inter-process communication by today's standards, but at the time
they were conceived, they provided a simple, e�cient method of solving the most important inter-
process communication problems. The signal() system call was early UNIX's method of de�ning
and installing signal handlers. One problem with the signal() call is that it needs to be reset each
time, like a mouse trap � once it catches a signal, arriving signals are missed. Another problem
with signal() is that its behavior was left unspeci�ed in the case when multiple signals arrived,
and di�erent implementations of UNIX provided di�erent semantics to handle multiple signals.

5.3.10 Multiple Signals

Suppose that a signal handler is in the midst of handling a signal that has been delivered when a
second signal is generated and is pending. There are a few possible ways to dispose of this new
signal:

• Ignore it completely, e�ectively losing the new signal;

• Put it in a queue and handle it when the current signal has been handled completely, e�ectively
blocking pending signals while handling the current one;

• Interrupt the processing of the current signal, handle the new signal, and return to the old
signal when the new one has been handled, e�ectively treating the handler like an involuntary
recursive function;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
35

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

In any one UNIX system, you might have found one of these solutions employed rather than the
others, without any consistency. The POSIX standard introduced a uniform solution to the problem
in the sigaction() interface.

5.3.11 The sigaction() call

The sigaction() system call allows a process to install a signal handler and to specify how it will
respond to multiple arriving signals. Its prototype is

#include <signal.h>

int (sigaction (int signum, const struct sigaction *act,

struct sigaction *oldaction);

where

signum is the value of the signal to be handled

act is a pointer to a sigaction structure that speci�es the handler, masks, and �ags for the
signal

oldact is a pointer to a structure to hold the currently active sigaction data.

We will examine the sigaction structure �rst to see how �exible this interface is. Notice that the
function name is the same as the name of the structure whose address is passed to it, like the stat()
function and the stat structure.

5.3.12 The sigaction struct

The sigaction structure is de�ned in <signal.h>. The de�nition is unusual because it has two
members (sa_handler and sa_sigaction) that are allowed to overlap in memory and must be
used in mutual exclusion. The simplest way to present it is as if it were two di�erent overloaded
de�nitions of the same structure:

struct sigaction // backward-compatible, old-style handler

{

void (*sa_handler) (int); // the action to take

sigset_t sa_mask; // additional signals to block

// during handling of the signal

int sa_flags; // flags that affect behavior

};

or

struct sigaction // POSIX compliant, new-style handler

{

void (*sa_sigaction) (int, siginfo_t *, void *);

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
36

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

// pointer to signal handler

sigset_t sa_mask; // additional signals to block

// during handling of the signal

int sa_flags; // flags that affect behavior

};

In other words, there are two di�erent forms of the sigaction structure. The �rst one uses the
old-style of handler, and the second uses the newer POSIX compliant method. The structs are
otherwise identical.

Notes

In the old-style, the sa_handler member does not have to be a pointer to a function. It can also be
one of the two �ags SIG_IGN or SIG_DFL. If it is SIG_IGN, the signal is ignored; if SIG_DFL, then the
default action is taken. If a pointer to a handler is supplied, that handler will be run. The handler
must have a single integer argument.

In the new style, the sa_handler is replaced by a pointer to a function that has three parameters
as follows:

• An sa_mask, which de�nes which signals should be blocked while the handler is processing the
signal. By default, the signal that caused the handler to run will always be blocked. Adding
signals to SA_MASK is a way to block other signals as well.

• The sa_flags is a �ag set that can be used to control how subsequent signals of the same type
as the one that caused the handler to run are handled. For example, if a handler is handling
a SIGINT signal and another SIGINT arrives while the process is in the handler, the sa_flags
will determine how to dispose of the second SIGINT. It has no e�ect on other arriving signals.
The �ags determine how arriving signals are handled after the handler has been invoked. All
�ags are independent and sa_flags is their bitwise-or. The most important �ags are:

SA_RESETHAND If this bit is set, the signal action is reset to SIG_DFL. This means that as
soon as the signal is delivered, the default action will take place. This �ag implies
the SA_NODEFER �ag; signals are not blocked, instead causing the process to take
whatever is the default action for the type of signal. The intention is to make the
handler behave like the old-style signal() handler, since any signal arriving after
the �rst will cause the default behavior.

SA_NODEFER If this bit is set, the kernel will not automatically block the signal while it is
being caught. This means that an arriving signal will cause the handler itself to
be interrupted and re-entered with the second signal. This is involuntary recursion.

SA_RESTART If this bit is set, certain system calls that would otherwise be terminated if a
signal were delivered during their execution, will be automatically restarted. This
bit allows the BSD style handling.

SA_SIGINFO If this bit is set, two additional arguments are passed to the signal-catching
function. If the second argument is not NULL, it points to a siginfo_t structure
containing the reason why the signal was generated; the third argument points to
a ucontext_t structure containing the receiving process's context when the signal
was delivered.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
37

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

Note. If multiple instances of an individual signal are delivered while that signal is currently blocked,
then only one instance is queued. For example, if you issue multiple SIGINT signals to a process,
without setting the SA_NODEFER �ag in the handler, then the �rst one will cause the handler to run,
the second will be queued, but all those after that will be lost.

5.3.12.1 Example

The �rst example, sigaction_demo1.c, shows how the SA_SIGINFO �ag can be used. A signal handler
for SIGINT is installed with the SA_SIGINFO �ag set. The program delays itself using sleep(60) so
that the user has time to enter a Ctrl-C. When the Ctrl-C is entered and the program is delivered
a SIGINT signal, the handler runs and accesses the siginfo_t structure to print the values of its
members as a result of the signal.

Listing 5.13: sigaction_demo1.c

#inc lude <uni s td . h>
#inc lude <sys / types . h>
#inc lude <s i g n a l . h>
#inc lude <b i t s / s i g i n f o . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

void s ig_handler (i n t s igno , s i g i n f o_t ∗ i n fo , void ∗ context)
{

p r i n t f (" S i gna l number : %d\n" , in fo−>si_s igno) ;
p r i n t f (" Error number : %d\n" , in fo−>si_errno) ;
p r i n t f ("PID o f sender : %d\n" , in fo−>si_pid) ;
p r i n t f ("UID o f sender : %d\n" , in fo−>si_uid) ;
e x i t (1) ;

}

i n t main (i n t argc , char∗ argv [])
{

s t r u c t s i g a c t i o n the_action ;

the_action . sa_f lags = SA_SIGINFO;
the_action . sa_s igac t i on = sig_handler ;

s i g a c t i o n (SIGINT , &the_action , NULL) ;

p r i n t f ("Type Ctrl−C with in the next minute"
" or send s i g n a l 2 . \n ") ;

s l e e p (6 0) ;
r e turn 0 ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
38

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.3.12.2 Example

The following program will demonstrate the use of the sigaction structure for old-style handlers
as well as the new-style handlers. The program begins by de�ning the sigaction structure that
will be passed to the sigaction function. The handler function, interrupt_handler, is assigned
to the sa_handler �eld. The sa_flags �eld is initialized with the bitwise-or of the �ags referenced
in the command-line. The sa_mask is built step by step. There are a few ways to do this. You can
start with an empty set and add to it or start with a full set and remove from it. In this case, I am
allowing the user to interactively add signal numbers to the blocked set, so I start with an empty
set and add to it. The method of creating these sets is discussed below.

Listing 5.14: sigaction_demo2.c

/∗
∗ Usage :
∗ sigaction_demo [r e s e t | noblock | r e s t a r t]∗
∗
∗ i . e . , 0 or more o f the words r e s e t , noblock , and r e s t a r t may appear
∗ on the command l i n e , and mul t ip l e i n s t an c e s o f the same word as the same
∗ e f f e c t as a s i n g l e i n s t anc e .
∗
∗ r e s e t turns on SA_RESETHAND
∗ noblock turns on SA_NODEFER
∗ r e s t a r t turns on SA_RESTART

∗
∗ NOTES
∗ (1) I f you supply the word " r e s e t " on the command l i n e i t w i l l s e t the
∗ handl ing to SIG_DFL f o r s i g n a l s that a r r i v e when the proce s s i s
∗ in the handler . I f noblock i s a l s o set , the s i g n a l w i l l have the
∗ de f au l t behavior immediately . I f i t i s not set , the d e f au l t w i l l
∗ delay un t i l a f t e r the handler e x i t s . I f noblock i s s e t but r e s e t i s
∗ not , i t w i l l r e c u r s i v e l y ente r the handler .
∗ (2) The inter rupt_handler purpose ly de lays f o r a few seconds in order to
∗ g ive the user time to ente r a few i n t e r r up t s on the keyboard .
∗ (3) inter rupt_handler i s the handler f o r both SIGINT and SIGQUIT, so i f i t
∗ i s not r e s e t , n e i t h e r Ctrl−C nor Ctrl−\ w i l l k i l l i t .
∗ (4) I t w i l l ask you to ente r the numeric va lue s o f s i g n a l s to block . I f
∗ you don ' t g ive any , no s i g n a l s are blocked .
∗
∗/

#inc lude <s td i o . h>
#inc lude <s t r i n g . h>
#inc lude <s i g n a l . h>
#inc lude <time . h>
#inc lude <f c n t l . h>

#de f i n e INPUTLEN 100

i n t main (i n t ac , char ∗ av [])
{

s t r u c t s i g a c t i o n newhandler ; /∗ new s e t t i n g s ∗/
s i g s e t_t blocked ; /∗ s e t o f b locked s i g s ∗/
void in thand l e r () ; /∗ the handler ∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
39

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

char x [INPUTLEN] ;
i n t f l a g s = 0 ;
i n t s igno , n ;
char s [] = "Entered text : " ;
i n t s_len = s t r l e n (s) ;

whi l e (1 < ac) {
i f (0 == strncmp (" r e s e t " , av [ac−1] , s t r l e n (av [ac −1])))

f l a g s |= SA_RESETHAND;
e l s e i f (0 == strncmp (" noblock " , av [ac−1] , s t r l e n (av [ac −1])))

f l a g s |= SA_NODEFER;
e l s e i f (0 == strncmp (" r e s t a r t " , av [ac−1] , s t r l e n (av [ac −1])))

f l a g s |= SA_RESTART;
ac−−;

}
/∗ load these two members f i r s t ∗/
newhandler . sa_s igac t i on = inter rupt_handler ; /∗ handler func t i on ∗/
newhandler . sa_f lags = SA_SIGINFO | f l a g s ; /∗ new s t y l e handler ∗/

/∗ then bu i ld the l i s t o f b locked s i g n a l s ∗/
s igemptyset (&blocked) ; /∗ c l e a r a l l b i t s ∗/

p r i n t f ("Type the numeric va lue o f a s i g n a l to block (0 to stop) : ") ;
whi l e (1) {

s can f ("%d" , &s igno) ;
i f (0 == s igno)

break ;
s i g add s e t (&blocked , s i gno) ; /∗ add s igno to l i s t ∗/
p r i n t f (" next s i g n a l number (0 to stop) : ") ;

}
newhandler . sa_mask = blocked ; /∗ s t o r e blockmask ∗/

// i n s t a l l i n thand l e r as the SIGINT handler
i f (s i g a c t i o n (SIGINT , &newhandler , NULL) == −1)

pe r ro r (" s i g a c t i o n ") ;

// i f s u c c e s s f u l , i n s t a l l i n thand l e r as the SIGQUIT handler a l s o
e l s e i f (s i g a c t i o n (SIGQUIT, &newhandler , NULL) == −1)

pe r ro r (" s i g a c t i o n ") ;
e l s e

whi l e (1) {
x [0] = ' \ 0 ' ;
t c f l u s h (0 ,TCIOFLUSH) ;
p r i n t f (" Enter t ex t then <RET>: (qu i t to qu i t)\n ") ;
n = read (0 , &x , INPUTLEN) ;
i f (n == −1 && errno == EINTR) {

p r i n t f (" read c a l l was in t e r rup t ed \n ") ;
x [n] = ' \ 0 ' ;
wr i t e (1 , &x , n+1);

}
e l s e i f (strncmp (" qu i t " , x , 4) == 0)

break ;
e l s e {

x [n] = ' \ 0 ' ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
40

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

wr i t e (1 , &s , s_len) ;
wr i t e (1 , &x , n+1);
p r i n t f ("\n ") ;

}
} // whi l e

re turn 0 ;
}

void inter rupt_handler (i n t s igno , s i g i n f o_t ∗ i n fo , void ∗ context)
{

i n t l o c a l i d ; /∗ s t o r e s a number to unique ly i d e n t i f y s i g n a l ∗/
time_t timenow ; /∗ cur rent time −− used to generate id ∗/
s t a t i c i n t t i c k e r = 0 ; /∗ used f o r id a l s o ∗/
s t r u c t tm ∗ tp ;

time(&timenow) ;
tp = l o c a l t ime (&timenow) ;
l o c a l i d = 36000∗ tp−>tm_hour + 600∗ tp−>tm_min + 10∗ tp−>tm_sec +

t i c k e r++ % 10 ;
p r i n t f (" Entered handler : s i g = %d \ t i d = %d\n" ,

in fo−>si_signo , l o c a l i d) ;
s l e e p (3) ;
p r i n t f (" Leaving handler : s i g = %d \ t i d = %d\n" ,

in fo−>si_signo , l o c a l i d) ;
}

The while loop in the main program exists just to demonstrate that the system calls to perform
I/O are restarted when the interrupts occur. You can run this program with any combination
of SA_RESTART, SA_RESETHAND, and SA_NODEFER to see the combined e�ect of the �ags. You can
add any signal to the blocked set, but you will only be able to send SIGINT and SIGQUIT unless
you open a separate window and use the kill command to send arbitrary signals to the process.
You can try this � put signal 4 in the blocked set and issue kill -4 with the process id from a
second window while the process is handling a Ctrl-C. You will see that signal 4 is blocked until
interrupt_handler() �nishes.

The while loop is designed so that you do not have to kill this program to terminate it. If you type
"quit" it will terminate.

5.3.13 Creating Signal Mask Sets

There are four functions that modify signal mask sets:

sigemptyset(sigset_t *setp);

sigfillset(sigset_t *setp);

sigaddset(sigset_t *setp, int signum);

sigdelset(sigset_t *setp, int signum);

The �rst two create empty and full mask sets respectively. The next two add or delete speci�c
signals from the speci�ed sets. You can either create an empty mask and add to it, or create a full
mask and delete from it. If you plan on having more than half of the signals in it, then do the
latter, otherwise do the former.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
41

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.3.14 Blocking Signals Temporarily around Critical Sections

The sigprocmask() system call can be used to block or unblock signals sent to a process. This is
useful if you need to temporarily turn o� all signals in a small section of code. This is one way to
create something like a critical section, in the sense that the process will not be interrupted in the
middle of the code fragment. It does not prevent the kernel from preempting the process and letting
another process run on the CPU, so it does not provide a means of protecting shared variables that
might be accessed while the process is removed from the CPU, but it does allow the process to
complete some critical sequence of statements without any signal handlers running in the interim,
and without being terminated in the midst of it. The prototype is

int sigprocmask(int how, const sigset_t *sigs, sigset_t *prev);

where how is one of SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK. SIG_BLOCK will block the speci�ed
signal set, i.e., prevent those signals from reaching until the procmask is changed. SIG_UNBLOCK

allows the signals in the set to be unblocked, and SIG_SETMASK is used to change the mask completely,
i.e., assign a new mask to the procmask. The following program can be run to demonstrate how
the blocking works. If you type Ctrl-C during the �rst loop, the process will continue to loop and
it will exit before the second loop is executed. If you change the SIG_BLOCK to SIG_UNBLOCK then
the Ctrl-C will kill the process when you type it.

Listing 5.15: procmask_demo.c

#inc lude <s i g n a l . h>
#inc lude <s td i o . h>

in t main ()
{

i n t i ;
s i g s e t_t s i g s , p r e v s i g s ;

s igemptyset (& s i g s) ;
s i g add s e t (& s i g s , SIGINT) ;
s igprocmask (SIG_BLOCK, &s i g s , &p r ev s i g s) ;

f o r (i = 0 ; i < 5 ; i++) {
p r i n t f ("Waiting %d\n" , i) ;
s l e e p (1) ;

}
s igprocmask (SIG_SETMASK, &prevs i g s , NULL) ;
f o r (i = 0 ; i < 5 ; i++) {

p r i n t f (" After %d\n" , i) ;
s l e e p (1) ;

}
}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
42

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

5.4 Summary

An understanding of terminals and signal handling is essential to being able to write UNIX System
applications. You now have almost all of the tools at your disposal to write terminal-based interac-
tive programs that can use the full terminal window and allow the user to interact with it at will.
As you will discover in the next chapter, you are still missing a few more pieces. For one, we still
need to manage timing more accurately and allow events to happen at speci�c times as controlled
by the program. For another, we do not have the means of placing characters anywhere on the
screen. This is what comes next.

The entire simplevi.c program is listed below. Many comments have been deleted to reduce the
space.

Listing 16: simplevi.c

#inc lude <s td i o . h>
#inc lude <ctype . h>
#inc lude <s t d l i b . h>
#inc lude <termios . h>
#inc lude <f c n t l . h>
#inc lude <time . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>
#inc lude <math . h>
#inc lude <getopt . h>
#i f n d e f TIOCGWINSZ
#inc lude <sys / i o c t l . h>
#end i f

#de f i n e RETRIEVE 1
#de f i n e RESTORE 2
#de f i n e FALSE 0
#de f i n e TRUE 1
#de f i n e ESCAPE '\033 '
#de f i n e CONTROL_C '\003 '
#de f i n e CONTROL_D '\004 '
#de f i n e CONTROL_H '\010 '
#de f i n e KEY_UP 65
#de f i n e KEY_DOWN 66
#de f i n e KEY_RIGHT 67
#de f i n e KEY_LEFT 68
#de f i n e MAXLINES 1000
#de f i n e MAXCHARS 255
#de f i n e OUT_OF_LINES −1
#de f i n e OUT_OF_MEM −2
#de f i n e UNHANDLEDCHAR −3

const char CLEAR_DOWN[] = "\033[0 J " ;
const i n t lCLEAR_DOWN = 4 ;
const char CLEAR_RIGHT[] = "\033[0K" ;
const i n t lCLEAR_RIGHT = 4 ;
const char CURSOR_HOME[] = "\033 [1 ; 1H" ;
const i n t lCURSOR_HOME = 6 ;
const char CLEAR_SCREEN[] = "\033[2 J " ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
43

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

const i n t lCLEAR_SCREEN = 4 ;
const char CLEAR_LINE [] = "\033[2K" ;
const i n t lCLEAR_LINE = 4 ;
const char RIGHT [] = "\033[1C" ;
const i n t lRIGHT = 4 ;
const char LEFT [] = "\033[1D" ;
const i n t lLEFT = 4 ;
const char BACKSPACE[] = "\033[1D \033 [1D" ;
const i n t lBACKSPACE = 9 ;
char PARK[2 0] ; /∗ s t r i n g to park cur so r at lower l e f t ∗/
i n t lPARK; /∗ l ength o f PARK s t r i n g ∗/

/∗ Misce l l aneous s t r i n g s f o r output ∗/
const char CTRLC[] = "You typed Control−C. " ;
const char CTRLD[] = "You typed Control−D. " ;
const char CTRLH[] = "This i s the Help Command. Not much help , so r ry ! " ;
const char BLANK = ' ' ;
const char INSERT [] = "−−INSERT−−";
const i n t lINSERT = 10 ;
const char MAXLINES_MSSGE[]

= "You reached the maximum number o f l i n e s . "
" Exi t ing input mode . " ;

const char OUT_OF_MEM_MSSGE[]
= "You reached the maximum bu f f e r s i z e . "

" Exi t ing input mode . " ;
const char UNHANDLEDCHAR_MSSGE[]

= "This input not yet implemented . "
" Exi t ing input mode . " ;

i n l i n e void clearandhome ()
{

wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;
wr i t e (1 ,CURSOR_HOME, lCURSOR_HOME) ;

}

i n l i n e void park ()
{

wr i t e (1 ,PARK, lPARK) ;
wr i t e (1 , CLEAR_LINE, lCLEAR_LINE) ;

}

/∗∗/
/∗ Data Types ∗/
/∗∗/

typede f s t r u c t _cursor
{

i n t r ;
i n t c ;

} Cursor ;

typede f s t r u c t _window
{

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
44

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

unsigned shor t rows ;
unsigned shor t c o l s ;
i n t l ine_at_top ;
char erase_char ;

} Window ;

typede f s t r u c t _buffer
{

char t ext [BUFSIZ] ;
i n t l i n e_len [MAXLINES] ; /∗ l eng th s o f t ex t l i n e s , i n c l ud ing newl ine

cha ra c t e r s ∗/
i n t l i n e_s t a r t [MAXLINES] ; /∗ s t a r t s o f each l i n e ∗/
i n t num_lines ; /∗ number o f t ex t l i n e s in bu f f e r . This

i n c l ud e s l i n e s that have not yet been
terminated with a newl ine cha rac t e r . I t i s
the number o f newl ine cha ra c t e r s + 1 i f the
l a s t cha rac t e r in the bu f f e r i s not a
newl ine . ∗/

i n t index ; /∗ index o f cur so r in t ext bu f f e r ∗/
i n t s i z e ; /∗ t o t a l chars in bu f f e r ∗/
i n t cur_l ine ; /∗ cur rent t ext l i n e , not s c r e en l i n e ∗/
i n t index_in_cur_line ; /∗ index in cur rent l i n e o f cur so r ∗/

} Buf f e r ;

/∗∗/
/∗ Function Prototypes ∗/
/∗∗/

/∗ Window/Terminal Functions ∗/
void init_window (i n t fd , Window ∗win) ;
void moveto (i n t l i n e , i n t column) ;
void write_status_message (const char ∗message , Cursor curs) ;
void save_restore_tty (i n t fd , i n t ac t i on) ;
void modify_termios (i n t fd , i n t echo , i n t canon) ;
void set_erase_char (i n t termfd , Window ∗win) ;

/∗ Buf f e r Functions ∗/
i n t i n s e r t (Buf f e r ∗buf , Window win , char ch) ;
void i n i t_bu f f e r (Buf f e r ∗ bu f f e r) ;
void update_buffer_index (Buf f e r ∗ bu f f e r) ;
i n t buf fer_index (i n t index_in_line , i n t cur_line , i n t l i n e l e n g t h []) ;
void redraw_buffer (Buf f e r bu f f e r , Window ∗win , Cursor ∗ curs) ;
void s c r o l l_bu f f e r (Buf f e r buf , Window win) ;
i n t l ine_in_buf f e r (Buf f e r buf , Window win , i n t pos) ;
void save_buf fer (const char path [] , Bu f f e r buf , char ∗ s t a t u s s t r) ;
i n t hand le_inse r t ion (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs , char c) ;
void get_last l ine_in_win (Buf f e r bu f f e r , Window win , i n t ∗ l a s t l i n e) ;

/∗ La s t l i n e Mode ∗/
i n t p a r s e l a s t l i n e (char ∗ s t r , i n t len , Buf f e r buf , char ∗ s t a t u s s t r) ;
i n t do_lastline_mode (Buf f e r buf , Window win , Cursor curs) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
45

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

/∗ Cursor Functions ∗/
void in i t_cur so r (Cursor ∗ cur so r) ;
void show_cursor (Buf f e r buf , Window win , Cursor cursor ,

i n t index_in_line , i n t line_number) ;
void advance_cursor (Cursor ∗ cursor , Window win , char ch) ;
void get_cursor_at (Buf f e r buf , Window win , i n t index ,

i n t l ineno , Cursor ∗ curs) ;
void handle_escape_char (Buf f e r ∗bin , Window ∗win , Cursor ∗ curs) ;
void moveUp (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs) ;
void moveDown (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs) ;
void moveRight (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs) ;
void moveLeft (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs) ;

/∗∗/
/∗ Main ∗/
/∗∗/

i n t main (i n t argc , char ∗ argv [])
{

i n t qu i t = 0 ;
i n t in_input_mode = 0 ;
i n t in_lastl ine_mode = 0 ;
Buf f e r buf ;
Window win ;
Cursor curs ; /∗ cur so r p o s i t i o n (0 , 0) i s upper l e f t ∗/
char prompt = ' : ' ; /∗ prompt charac t e r ∗/
char c ;
i n t s t a tu s ;

i f (! i s a t t y (STDIN_FILENO) | | ! i s a t t y (STDOUT_FILENO)) {
f p r i n t f (s tde r r , "Not a te rmina l \n ") ;
e x i t (1) ;

}

save_restore_tty (STDIN_FILENO, RETRIEVE) ;
modify_termios (STDIN_FILENO, 0 , 0) ;
i n i t_bu f f e r (&buf) ;
i n i t_cur so r (&curs) ;
init_window (STDIN_FILENO, &win) ;

s p r i n t f (PARK, "\033[%d ; 1H" , win . rows) ;
lPARK = s t r l e n (PARK) ;

/∗ Clear the s c r e en and put cur so r in upper l e f t corner ∗/
clearandhome () ;

whi l e (! qu i t) {
i f (in_input_mode) {

i f (read (STDIN_FILENO, &c , 1) > 0) {
i f (c == ESCAPE) {

in_input_mode = 0 ;
write_status_message (" " , curs) ;

}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
46

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

e l s e {
/∗ i n s e r t typed char and echo i t ∗/
in_input_mode = hand le_inse r t ion (&buf , &win , &curs , c) ;
i f (in_input_mode == UNHANDLEDCHAR)

in_input_mode = 1 ;
e l s e

write_status_message (INSERT, curs) ;
}

}
}
e l s e {

i f (read (STDIN_FILENO, &c , 1) > 0) {
switch (c) {
case ' i ' :

in_input_mode = 1 ;
park () ;
update_buffer_index(&buf) ;
moveto (curs . r , curs . c) ;
write_status_message (INSERT, curs) ;
break ;

case ' : ' :
in_last l ine_mode = 1 ;
park () ;
wr i t e (1 ,&prompt , 1) ;
s t a tu s = do_lastline_mode (buf , win , curs) ;
i f (s t a tu s >= 0) qu i t = s ta tu s ;
moveto (curs . r , curs . c) ;
break ;

case ' \003 ' :
write_status_message (CTRLC, curs) ;
break ;

case ' \004 ' :
write_status_message (CTRLD, curs) ;

break ;
case ' \010 ' :

write_status_message (CTRLH, curs) ;
break ;

case ' j ' :
moveDown(&buf , &win , &curs) ;
break ;

case 'k ' :
moveUp(&buf , &win , &curs) ;
break ;

case ' l ' :
case ' ' :

moveRight(&buf , &win , &curs) ;
break ;

case 'h ' :
moveLeft(&buf , &win , &curs) ;
break ;

case ESCAPE:
handle_escape_char (&buf , &win , &curs) ;
break ;

d e f au l t :

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
47

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

i f (c == win . erase_char)
moveLeft(&buf , &win , &curs) ;

}
}

}
}
p r i n t f ("\n ") ;
t c f l u s h (STDIN_FILENO,TCIFLUSH) ;
clearandhome () ;
save_restore_tty (STDIN_FILENO, RESTORE) ;
re turn 0 ;

}
/∗∗/

i n t p a r s e l a s t l i n e (char ∗ s t r , i n t len , Buf f e r buf , char ∗ s t a t u s s t r)
{

i n t i = 0 ;
i n t foundquit = 0 ;
i n t foundwr i te = 0 ;
i n t badchar = 0 ;
i n t done = 0 ;
char ∗ f i l ename = NULL;
i n t s t a t e ;

s t a t e = 1 ;
whi l e ((i < l en) && ! done) {

switch (s t a t e) {
case 1 :

i f (s t r [i] == ' ')
s t a t e = 1 ;

e l s e i f (s t r [i] == 'w') {
foundwri te = 1 ;
s t a t e = 2 ;

}
e l s e i f (s t r [i] == 'q ') {

foundquit = 1 ;
s t a t e = 7 ;

}
e l s e

s t a t e = 5 ;
i++;
break ;

case 2 :
i f (s t r [i] == 'q ') {

foundquit = 1 ;
s t a t e = 3 ;

}
e l s e i f (s t r [i] == ' ')

s t a t e = 4 ;
e l s e

s t a t e = 5 ;
i++;
break ;

case 3 :

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
48

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

i f (s t r [i] == ' ')
s t a t e = 4 ;

e l s e
s t a t e = 5 ;

i++;
break ;

case 4 :
i f (s t r [i] == ' ')

s t a t e = 4 ;
e l s e i f (isalnum (s t r [i]) | | s t r [i] == '_') {

f i l ename = &(s t r [i]) ;
s t a t e = 6 ;

}
e l s e

s t a t e = 5 ;
i++;
break ;

case 5 :
badchar = 1 ;
s p r i n t f (s t a t u s s t r , "\033[7m: %s Not an ed i t o r command\033[27m" , s t r) ;
r e turn −1;

case 6 :
f i l ename = &(s t r [i −1]) ;
whi l e ((i < l en) && (isalnum (s t r [i]) | | s t r [i] == '_'))

i++;
s t r [i] = ' \ 0 ' ;
done = 1 ;
break ;

case 7 :
i f (s t r [i] == ' ')

s t a t e = 7 ;
e l s e {

badchar = 1 ;
s p r i n t f (s t a t u s s t r ,

"\033[7m: %s Not an ed i t o r command\033[27m" , s t r) ;
r e turn −1;

}
i++;

}
}
i f (foundwri te) {

i f (f i l ename != NULL)
save_buf fer (f i l ename , buf , s t a t u s s t r) ;

e l s e {
s p r i n t f (s t a t u s s t r ,

"\033[7m: %s Not an ed i t o r command\033[27m" , s t r) ;
r e turn −1;

}
}
i f (foundquit)

re turn 1 ;
e l s e

re turn 0 ;
}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
49

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

/∗∗/

i n t do_lastline_mode (Buf f e r buf , Window win , Cursor curs)
{

char tempstr [MAXCHARS] ;
char s t a t u s s t r [MAXCHARS] ;
char c ;
i n t i = 0 ;
i n t s t a tu s ;
i n t in_last l ine_mode = 1 ;

whi l e (in_last l ine_mode) {
read (STDIN_FILENO, &c , 1) ;
i f (c == '\n ') {

tempstr [i] = ' \ 0 ' ;
s t a tu s = p a r s e l a s t l i n e (tempstr , s t r l e n (tempstr) ,

buf , s t a t u s s t r) ;
in_last l ine_mode = 0 ;
write_status_message (s t a tu s s t r , curs) ;
s t a t u s s t r [0] = ' \ 0 ' ;

}
e l s e i f (c == win . erase_char) {

wr i t e (1 ,BACKSPACE, lBACKSPACE) ;
i f (i > 0)

i−−;
e l s e

in_last l ine_mode = 0 ;
}
e l s e {

tempstr [i++] = c ;
wr i t e (1 ,&c , 1) ;

}
}
re turn s t a tu s ;

}
/∗∗/

void handle_escape_char (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs)
{

char c ;

read (STDIN_FILENO, &c , 1) ;
i f (c == 91) {

read (STDIN_FILENO, &c , 1) ;
switch (c) {
case KEY_UP:

moveUp(buf , win , curs) ;
break ;

case KEY_DOWN:
moveDown(buf , win , curs) ;
break ;

case KEY_RIGHT:
moveRight (buf , win , curs) ;
break ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
50

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

case KEY_LEFT:
moveLeft (buf , win , curs) ;
break ;

}
}

}
/∗∗∗/

void set_erase_char (i n t termfd , Window ∗win)
{

s t r u c t termios cur_tty ;
t c g e t a t t r (termfd , &cur_tty) ;

win−>erase_char = cur_tty . c_cc [VERASE] ;
}
/∗∗∗/

void modify_termios (i n t fd , i n t echo , i n t canon)
{

s t r u c t termios cur_tty ;
t c g e t a t t r (fd , &cur_tty) ;

i f (canon)
cur_tty . c_ l f l a g |= ICANON;

e l s e
cur_tty . c_ l f l a g &= ~ICANON;

i f (echo)
cur_tty . c_ l f l a g |= ECHO;

e l s e
cur_tty . c_ l f l a g &= (~ECHO & ~ECHOE) ;

cur_tty . c_ l f l a g &= ~ISIG ;
cur_tty . c_cc [VMIN] = 1 ;
cur_tty . c_cc [VTIME] = 0 ;

t c s e t a t t r (fd , TCSADRAIN, &cur_tty) ;
}
/∗∗∗/

void save_restore_tty (i n t fd , i n t ac t i on)
{

s t a t i c s t r u c t termios o r i g i n a l_ s t a t e ;
s t a t i c i n t r e t r i e v e d = FALSE;

i f (RETRIEVE == act i on){
r e t r i e v e d = TRUE;
t c g e t a t t r (fd , &o r i g i n a l_ s t a t e) ;

}
e l s e i f (r e t r i e v e d && RESTORE == act i on) {

t c s e t a t t r (fd , TCSADRAIN, &o r i g i n a l_ s t a t e) ;
}
e l s e

f p r i n t f (s tde r r , " I l l e g a l a c t i on to save_restore_tty () . \ n ") ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
51

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

}

/∗∗
Window Functions

∗∗/

void init_window (i n t fd , Window ∗win)
{

s t r u c t w in s i z e s i z e ;

i f (i o c t l (fd , TIOCGWINSZ, &s i z e) < 0) {
pe r ro r ("TIOCGWINSZ e r r o r ") ;
r e turn ;

}
win−>rows = s i z e . ws_row ;
win−>co l s = s i z e . ws_col ;
win−>line_at_top = 0 ;
set_erase_char (fd , win) ;

}
/∗∗/

void write_status_message (const char ∗message , Cursor curs)
{

wr i t e (1 ,PARK, lPARK) ;
wr i t e (1 , CLEAR_LINE, lCLEAR_LINE) ;
wr i t e (1 , message , s t r l e n (message)) ;
moveto (curs . r , curs . c) ;

}
/∗∗/

void moveto (i n t l i n e , i n t column)
{

char seq_str [2 0] ;

s p r i n t f (seq_str , "\033[%d;%dH" , l i n e +1, column+1);
wr i t e (1 , seq_str , s t r l e n (seq_str)) ;

}

/∗∗
Buf f e r Functions

∗∗/

void i n i t_bu f f e r (Buf f e r ∗ bu f f e r)
{

bu f f e r−>num_lines = 0 ;
bu f f e r−>cur_l ine = 0 ;
bu f f e r−>l ine_len [0] = 0 ;
bu f f e r−>l i n e_s t a r t [0] = 0 ;
bu f f e r−>s i z e = 0 ;
bu f f e r−>index_in_cur_line = 0 ;
bu f f e r−>index = 0 ;

}
/∗∗/

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
52

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

void save_buf fer (const char path [] , Bu f f e r buf , char ∗ s t a t u s s t r)
{

char newl ine = '\n ' ;
i n t fd ;
// char s t a t u s s t r [8 0] ;

fd = c r ea t (path , 0644) ;
i f (fd != −1) {

s p r i n t f (s t a t u s s t r ,
"\"%s \" %dL %dC wr i t t en " ,
path , buf . num_lines+1, buf . s i z e) ;

wr i t e (fd , buf . text , s t r l e n (buf . t ex t)) ;
i f (buf . t ex t [buf . s i z e −1] != '\n ')

wr i t e (fd , &newline , 1) ;
c l o s e (fd) ;

}
e l s e

e x i t (1) ;
}
/∗∗/

void update_buffer_index (Buf f e r ∗ bu f f e r)
{

i n t t o t a l c h a r s = 0 ;
i n t i = 0 ;

whi l e (i < bu f f e r−>cur_l ine) {
t o t a l c h a r s += buf f e r−>l ine_len [i] ;
i++;

}
t o t a l c h a r s += buf f e r−>index_in_cur_line ;
bu f f e r−>index = to t a l c h a r s ;

}

/∗∗/

void get_last l ine_in_win (Buf f e r bu f f e r , Window win , i n t ∗ l a s t l i n e)
{

i n t t o t a l l i n e s = 0 ;
i n t i ;
i n t max_possible = win . rows−1; /∗ rows l e s s s t a tu s l i n e ∗/

i = win . l ine_at_top ;
whi l e (i < bu f f e r . num_lines) {

i f (bu f f e r . l i n e_len [i] <= win . c o l s)
t o t a l l i n e s++;

e l s e
t o t a l l i n e s += (i n t) c e i l ((double) bu f f e r . l i n e_len [i] / win . c o l s) ;

i f (t o t a l l i n e s > max_possible)
break ;

e l s e {
i++;

}
}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
53

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

// t o t a l > max_possible , so we use prev ious l i n e , which i s i −1.
∗ l a s t l i n e = i −1;

}
/∗∗/

void redraw_buffer (Buf f e r bu f f e r , Window ∗win , Cursor ∗ curs)
{

i n t i ;
i n t l a s t l i n e ;
i n t l a s t c h a r ;
i n t f i r s t c h a r ;
i n t l ine_of_cursor ;

/∗ Compute the l a s t v i s i b l e complete t ex t l i n e in the bu f f e r ∗/
get_last l ine_in_win (bu f f e r , ∗win , &l a s t l i n e) ;

/∗ Get the index o f the text l i n e conta in ing the i n s e r t i o n po s i t i o n ∗/
l ine_of_cursor = l ine_in_buf f e r (bu f f e r , ∗win , bu f f e r . index) ;

/∗ Check i f the window needs to be s c r o l l e d ∗/
i f (l ine_of_cursor < win−>line_at_top) {

l a s t l i n e −= (win−>line_at_top − l ine_of_cursor) ;
curs−>r += (win−>line_at_top − l ine_of_cursor) ;
win−>line_at_top = l ine_of_cursor ;

}
e l s e i f (l ine_of_cursor > l a s t l i n e) {

win−>line_at_top += (l ine_of_cursor − l a s t l i n e) ;
curs−>r −= (l ine_of_cursor − l a s t l i n e) ;
l a s t l i n e = l ine_of_cursor ;

}

l a s t c h a r = bu f f e r . l i n e_s t a r t [l a s t l i n e] + bu f f e r . l i n e_len [l a s t l i n e] ;
f i r s t c h a r = bu f f e r . l i n e_s t a r t [win−>line_at_top] ;

/∗ Prepare to redraw the window . F i r s t c l e a r the s c r e en . ∗/
wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;

/∗ Do the redraw ∗/
moveto (0 , 0) ;
f o r (i = f i r s t c h a r ; i < l a s t c h a r ; i++)

wr i t e (1 ,& bu f f e r . t ex t [i] , 1) ;
}
/∗∗∗/

void s c r o l l_bu f f e r (Buf f e r buf , Window win)
{

/∗
This c a l c u l a t e s the po s i t i o n o f the f i r s t cha rac t e r on the s c r e en
as the l e f tmos t cha rac t e r in the cur rent line_at_top , and then
c a l l s get_last l ine_in_win () to get the index o f the l a s t t ex t l i n e
that can f i t in i t s e n t i r e t y with in the window . I t then computes
the index o f the l a s t cha rac t e r in that l i n e .

I t then c l e a r s the s c r e en and wr i t e s the contents o f the text bu f f e r ,

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
54

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

s t a r t i n g at the computed f i r s t c h a r un t i l the l a s t c h a r . The cur so r
has to be moved to the upper l e f t −hand corner be f o r e s t a r t i n g .
The c a l l e r i s r e s p on s i b l e f o r r e s t o r i n g the prev ious cur so r p o s i t i o n .

∗/

i n t i ;
i n t l a s t l i n e ;
i n t l a s t c h a r ;
i n t f i r s t c h a r = buf . l i n e_s t a r t [win . l ine_at_top] ;

get_last l ine_in_win (buf , win , &l a s t l i n e) ;
l a s t c h a r = buf . l i n e_s t a r t [l a s t l i n e] + buf . l i n e_len [l a s t l i n e] ;

wr i t e (1 ,CLEAR_SCREEN, lCLEAR_SCREEN) ;
moveto (0 , 0) ;
f o r (i = f i r s t c h a r ; i < l a s t c h a r ; i++)

wr i t e (1 ,& buf . t ex t [i] , 1) ;
}
/∗∗/

i n t l ine_in_buf f e r (Buf f e r buf , Window win , i n t pos)
{

i n t i = 0 ;

whi l e (i < buf . num_lines)
i f (buf . l i n e_s t a r t [i] <= pos)

i++;
e l s e

break ;
/∗ I f the i n s e r t e d charac t e r i s a newline , add

the extra l i n e ∗/
i f ((buf . t ex t [pos] == '\n '))

i++;
return i −1;

}
/∗∗/

i n t i n s e r t (Buf f e r ∗buf , Window win , char c)
{

i n t i ;

i f ((c == '\n ') && (MAXLINES == buf−>num_lines))
re turn OUT_OF_LINES;

e l s e i f (buf−>s i z e == BUFSIZ)
re turn OUT_OF_MEM;

i f (c == win . erase_char)
re turn UNHANDLEDCHAR;

f o r (i = buf−>s i z e ; i > buf−>index ; i−−)
buf−>text [i] = buf−>text [i −1] ;

buf−>text [buf−>index] = c ;
buf−>s i z e++;
buf−>index++;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
55

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

buf−>l ine_len [buf−>cur_l ine]++;

/∗ the f i r s t cha rac t e r s e t s l i n e count to 1 ∗/
i f (buf−>s i z e == 1) buf−>num_lines++;

i f (c == '\n ') {
i n t temp = buf−>l ine_len [buf−>cur_l ine] ;

buf−>l ine_len [buf−>cur_l ine] = buf−>index_in_cur_line + 1 ;
buf−>num_lines++;

f o r (i = buf−>num_lines−1; i > buf−>cur_l ine+1; i−−) {
buf−>l ine_len [i] = buf−>l ine_len [i −1] ;
buf−>l i n e_s t a r t [i] = buf−>l i n e_s t a r t [i −1]+1;

}
buf−>l i n e_s t a r t [buf−>cur_l ine+1] = buf−>l i n e_s t a r t [buf−>cur_l ine]

+ buf−>l ine_len [buf−>cur_l ine] ;

buf−>cur_l ine++;
buf−>l ine_len [buf−>cur_l ine] = temp − buf−>l ine_len [buf−>cur_line −1] ;
buf−>index_in_cur_line = 0 ;

}
e l s e i f (i s p r i n t (c)) { /∗ non−newl ine cha rac t e r ∗/

buf−>index_in_cur_line++; // advance index in l i n e
/∗ increment a l l l i n e s t a r t s a f t e r t h i s l i n e ∗/
f o r (i = buf−>cur_l ine+1; i < buf−>num_lines ; i++)

buf−>l i n e_s t a r t [i]++;
}
e l s e

re turn UNHANDLEDCHAR;

return 0 ;
}

i n t hand le_inse r t ion (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs , char c)
{

i n t r e t va l u e ;

/∗ i n s e r t typed char and echo i t ∗/
r e tva l u e = i n s e r t (buf , ∗win , c) ;
i f (r e t va l u e < 0) {

i f (r e t va l u e == OUT_OF_LINES)
write_status_message (MAXLINES_MSSGE, ∗ curs) ;

e l s e i f (r e t va l u e == OUT_OF_MEM)
write_status_message (OUT_OF_MEM_MSSGE, ∗ curs) ;

e l s e i f (r e t va l u e == UNHANDLEDCHAR) {
write_status_message (UNHANDLEDCHAR_MSSGE, ∗ curs) ;
r e turn r e tva l u e ;

}
re turn 0 ;

}
advance_cursor (curs , ∗win , c) ;
redraw_buffer (∗buf , win , curs) ;
moveto (curs−>r , curs−>c) ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
56

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

re turn 1 ;
}

/∗∗∗
Cursor Functions

∗∗∗/

void get_cursor_at (Buf f e r buf , Window win , i n t index , i n t l ineno ,
Cursor ∗ curs)

{
i n t t o ta l_ l i n e s_be f o r e = 0 ;
i n t rows_in_current_text l ine = 0 ;
i n t i ;

f o r (i = win . l ine_at_top ; i < l i n eno ; i++) {
i f (buf . l i n e_ len [i] < win . c o l s)

t o ta l_ l in e s_be f o r e++;
e l s e

t o ta l_ l in e s_be f o r e += (in t) c e i l ((double) buf . l i n e_len [i] / win . c o l s) ;
}
rows_in_current_text l ine = index /win . c o l s ;
curs−>r = to ta l_ l in e s_be f o r e + rows_in_current_text l ine ;
curs−>c = index − rows_in_current_text l ine ∗ win . c o l s ;

}
/∗∗/

void advance_cursor (Cursor ∗ cursor , Window win , char ch)
{

i f (ch == '\n ') {
cursor−>r++;
cursor−>c = 0 ;

}
e l s e {

cursor−>c++;
i f (cursor−>c == win . c o l s) { /∗ wrap the l i n e ∗/

cursor−>c = 0 ;
cursor−>r++;

}
}

}
/∗∗/

void in i t_cur so r (Cursor ∗ cur so r)
{

cursor−>r = 0 ;
cursor−>c = 0 ;

}
/∗∗/

void show_cursor (Buf f e r buf , Window win , Cursor cursor ,
i n t index_in_line , i n t line_number)

{
char curs_str [8 0] ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
57

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

s p r i n t f (curs_str , "Cursor : [%d,%d] l i n e index : %d win t op l i n e : %d "
"buf #l i n e s : %d" ,

cur so r . r+1, cur so r . c+1, line_number , win . line_at_top ,
buf . num_lines) ;

wr i t e (1 ,PARK, lPARK) ;
wr i t e (1 , CLEAR_LINE, lCLEAR_LINE) ;
wr i t e (1 , curs_str , s t r l e n (curs_str)) ;
moveto (cur so r . r , cu r so r . c) ;

}
/∗∗/

void moveUp(Buf f e r ∗buf , Window ∗win , Cursor ∗ curs)
{

/∗ i f buf . cur_l ine == 0 , we cannot go up fu r t h e r ∗/
i f (buf−>cur_l ine > 0) {

buf−>cur_line−−;

i f (buf−>index_in_cur_line >= buf−>l ine_len [buf−>cur_l ine]) {
buf−>index_in_cur_line = buf−>l ine_len [buf−>cur_l ine]−1;

}

i f (buf−>cur_l ine >= win−>line_at_top) {
get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line , buf−>cur_line ,

curs) ;
}

e l s e {
win−>line_at_top = buf−>cur_l ine ;
get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line , buf−>cur_line ,

curs) ;
s c r o l l_bu f f e r (∗ buf , ∗win) ;

}
moveto (curs−>r , curs−>c) ;

}
}
/∗∗/

void moveDown(Buf f e r ∗buf , Window ∗win , Cursor ∗ curs)
{

i n t l a s t l i n e ;

i f (buf−>cur_l ine < buf−>num_lines−1) {
buf−>cur_l ine++;
/∗ Check whether the cur so r would be past the r ightmost cha rac t e r

o f the now cur rent l i n e . I f so , p o s i t i o n i t j u s t past the r ightmost
cha rac t e r . ∗/

i f (buf−>index_in_cur_line >= buf−>l ine_len [buf−>cur_l ine]) {
buf−>index_in_cur_line = buf−>l ine_len [buf−>cur_l ine]−1;

}

get_last l ine_in_win (∗buf , ∗win , &l a s t l i n e) ;

i f (buf−>cur_l ine > l a s t l i n e) {
/∗ Need to s c r o l l ∗/
win−>line_at_top += buf−>cur_l ine − l a s t l i n e ;

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
58

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

UNIX Lecture Notes

Chapter 5 Interactive Programs and Signals

Prof. Stewart Weiss

get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line , buf−>cur_line ,
curs) ;

s c r o l l_bu f f e r (∗ buf , ∗win) ;
}
e l s e

get_cursor_at (∗ buf , ∗win , buf−>index_in_cur_line ,
buf−>cur_line , curs) ;

moveto (curs−>r , curs−>c) ;
}

}
/∗∗∗/

void moveRight (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs)
{

i f ((buf−>index_in_cur_line < buf−>l ine_len [buf−>cur_l ine] −1) | |
((buf−>index_in_cur_line < buf−>l ine_len [buf−>cur_l ine])

&& (buf−>cur_l ine == buf−>num_lines−1)))

{
buf−>index_in_cur_line++;
i f (buf−>index_in_cur_line % win−>co l s == 0) {

curs−>r++;
curs−>c = 0 ;
i f (curs−>r > win−>rows−2) {

win−>line_at_top += curs−>r − (win−>rows−2);
s c r o l l_bu f f e r (∗ buf , ∗win) ;

}
moveto (curs−>r , curs−>c) ;

}
e l s e {

curs−>c++;
wr i t e (1 , RIGHT, lRIGHT) ;

}
}

}
/∗∗∗/

void moveLeft (Buf f e r ∗buf , Window ∗win , Cursor ∗ curs)
{

i f (buf−>index_in_cur_line > 0) {
i f (buf−>index_in_cur_line % win−>co l s == 0) {

curs−>r−−;
curs−>c = win−>co l s −1;
moveto (curs−>r , curs−>c) ;

}
e l s e {

curs−>c−−;
wr i t e (1 , LEFT, lLEFT) ;

}
buf−>index_in_cur_line−−;

}
}

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
59

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Interactive Programs and Signals
	The Different Types of UNIX Programs
	Software Tools (Filters)
	Daemons
	Interactive User Programs

	Designing Interactive User Programs
	Two Different Paradigms
	A Simple Text Editor: simplevi
	Features of simplevi
	Program Design
	Terminal Interaction
	The Main Program

	Non-Blocking Input
	Allowing Time-Outs
	A Test Program

	Signals
	Typing Ctrl-C at a Terminal
	Sources of Signals
	Signal Types
	Sending Signals
	Signal Generation and Delivery
	Signal Handling
	Putting It Together
	Weaknesses of the Signal Mechanism
	Signal Handling The "Right" Way
	Multiple Signals
	The sigaction() call
	The sigaction struct
	Example
	Example

	Creating Signal Mask Sets
	Blocking Signals Temporarily around Critical Sections

	Summary

