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7.1 Introduction

In a typical operating systems course, a process is de�ned to be a program in execution, or something
similar to that. This is a true and accurate abstraction. A program such as the bash shell can have
many, many instances running on a multi-user machine and each individual instance is a separate
and distinct process, although each and every one of these is executing the exact same executable
�le. What this de�nition does not tell you is what a process is in concrete terms. It is like saying
that a baseball game is an instance of the implementation of a set of rules created by Alexander
Cartwright in 1845 by which two teams compete against each other on a playing �eld. Neither
de�nition gives you a mental picture of the thing being de�ned.

In this chapter, we focus on the concrete representation of a process in UNIX: how it is represented
within the kernel, what kinds of resources it requires, how those resources are materialized and
managed, what attributes it has, and what system calls are related to its control and management.
As a �rst step we will look at processes from the command level. Afterward, we will look at how
UNIX systems arrange their address spaces and manage them in virtual and physical memory. Then
we will look at how processes are created and how they communicate and synchronize with each
other.

7.2 Examining Processes on the Command Line

The ps command is used for viewing one or more processes currently known to the operating
system. I say "currently known" as opposed to "active" because the list may include processes
that are technically not active, so called zombie processes. The set of options available for the ps

command is very system dependent. There were di�erent versions of it in BSD systems and in
Version 7, and then there are options added by GNU. RedHat Linux systems support all of the
historical options, and so there are many di�erent ways to use this command in Linux. In Linux,
users also have the option of running the top command. The top command is very much like ps,
except that it displays the dynamic, real-time view of the state of the system. It is like the Windows
task manager, and also like a terminal-based version of the Gnome System Monitor. Here we will
describe the standard syntax rather than the BSD style or GNU syntax.

The ps command without options displays the list of processes of the login id that executes it, in a
short form:
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$ ps

PID TTY TIME CMD

14244 pts/1 00:00:00 bash

14572 pts/1 00:00:00 ps

You will notice that it always contains a line for the command itself because it itself has to run to
do its job, obviously. The -f option causes it to display a full listing:

$ ps -f

UID PID PPID C STIME TTY TIME CMD

sweiss 2508 2507 0 12:09 pts/8 00:00:00 -bash

sweiss 3132 2508 0 12:22 pts/8 00:00:00 ps -f

The UID column is the user login name. The PID column is the process id of the process. The
PPID column is the parent process's process id. The C �eld is rarely of interest; it gives processor
utilization information. The STIME �eld is the starting time in hours, minutes, and seconds. The
TIME column is the cumulative execution time, which for short commands will be zero, since the
smallest unit of measurement in this column is seconds. The CMD column is the command line being
executed by this process; in this case there are two: bash and "ps -f". All command line arguments
are displayed; if any are suppressed, the command will appear in square brackets:

root 3080 1 0 Jan29 ? 00:00:00 [lockd]

The TTY column is the controlling terminal attached to this process. Some processes have no
terminal, in which case a "?" will appear.

The -e option displays all processes, which will be quite long. If I want to know which process is
the parent of my bash process, I can use ps -ef and �lter using grep:

$ ps -ef | grep 2507

sweiss 2507 2504 0 12:09 ? 00:00:00 sshd: sweiss@pts/8

sweiss 2508 2507 0 12:09 pts/8 00:00:00 -bash

sweiss 3207 2508 0 12:30 pts/8 00:00:00 grep 2507

From this output you see that I am connected via ssh on pseudo-terminal pts/8 and that the ssh
daemon sshd is the parent of my bash process.

You can learn a lot about a system just by running ps. For example, on our Linux system, the �rst
few processes in the system are:

$ ps -ef | head -4

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jan29 ? 00:00:01 init [5]

root 2 1 0 Jan29 ? 00:00:02 [migration/0]

root 3 1 0 Jan29 ? 00:00:00 [ksoftirqd/0]

whereas on our Solaris 9 server, the list is:
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$ ps -ef | head -4

UID PID PPID C STIME TTY TIME CMD

root 0 0 0 Mar 13 ? 0:23 sched

root 1 0 0 Mar 13 ? 0:00 /etc/init -

root 2 0 0 Mar 13 ? 0:00 pageout

Notice that in Solaris, the (CPU) process scheduler itself is the very �rst process in the system.
It is absent in Linux. In all UNIX systems, the process with PID 1 is always init. In Solaris, the
pageout process is responsible for writing pages to disk, and fsflush �ushes system bu�ers to disk.

The -u and -U options are useful for viewing all of your processes or those of others in a supplied
user list. The list of users must be comma-separated, with no intervening spaces. For example:

$ ps -f -U sweiss,wgrzemsk

UID PID PPID C STIME TTY TIME CMD

sweiss 2507 2504 0 12:09 ? 00:00:00 sshd: sweiss@pts/8

sweiss 2508 2507 0 12:09 pts/8 00:00:00 -bash

wgrzemsk 2572 2570 0 12:10 ? 00:00:00 sshd: wgrzemsk@notty

wgrzemsk 2575 2573 0 12:10 ? 00:00:00 /bin/sh

While there are dozens of other options, I will only mention one more: the -o option. You can
customize the output of the ps command to include any of the dozens of attributes available to be
displayed using -o. The man page gives the general format for this. Some examples from the man
page:

ps -eo pid,tid,class,rtprio,ni,pri,psr,pcpu,stat,wchan:14,comm

ps axo stat,euid,ruid,tty,tpgid,sess,pgrp,ppid,pid,pcpu,comm

ps -eopid,tt,user,fname,tmout,f,wchan

Note that there are no spaces in the list. In general never use spaces in any of the lists because
the shell will then treat them as separate words rather than a single word to be passed to the ps

command itself.

A related command is pgrep. If you need the process id of a command or program that is running,
typing pgrep <executable name> will give you a list of processes running that program, one per
line. For example

$ pgrep bash

2508

3502

3621

showing that three instances of bash are running, with pids 2508, 3502, and 3621.
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7.3 Process Groups

UNIX systems allow processes to be placed into groups. There are several reasons for grouping
processes. One is that a signal can be sent to an entire process group rather than a single process.
For example, the shell arranges that all processes created in order to carry out the command line
are in a single group, so that if the user needs to terminate that command, a single signal sent via
Ctrl-C will kill all processes in the group. The alternative would require using the ps command to
�nd all processes that were created to carry out the command.

Every process has a process group-id (of type pid_t). There is a single process in each group that
is considered to be the leader of the group. It can be identi�ed easily, because it is the only process
whose process group-id is the same as its process-id. You can view the process group-id of a process
in the output of ps by using the -o option and specifying the format in either AIX format, such as

ps -o'%U %p %P %r %C %x %y %a'

or in standard format, as in

ps -ouser,pid,ppid,pgrp,%cpu,cputime,tty,args

If you run the command

$ cat | sort -u | wc

and then view the processes using one of the above ps commands, you will see the group formation:

$ psg -u sweiss | egrep 'TIME|cat|sort|wc'

USER PID PPID PGID %CPU TIME TTY COMMAND

sweiss 17198 17076 17198 0.0 00:00:00 pts/2 cat

sweiss 17199 17076 17198 0.0 00:00:00 pts/2 sort -u

sweiss 17200 17076 17198 0.0 00:00:00 pts/2 wc

Notice that the cat command's process group-id (pgid) is the same as its process-id (pid) and that
the three processes belong to the same group. If the full listing were displayed you would see that
no other process is in this group.

7.4 Foreground and Background Processes

UNIX allows processes to run in the foreground or in the background. Processes invoked from a shell
command line are foreground processes, unless they have been explicitly placed into the background
by appending an ampersand '&' to the command line. There can be only one process group in the
foreground at any time, because you cannot enter a new command until the currently running one
terminates and the shell prompt returns. Foreground processes can read from and write to the
terminal.
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In contrast, there is no limit to the number of background processes, but in a POSIX-compliant
system, they cannot read from or write to the terminal. If they try to do either, they will be stopped
by the kernel (via SIGTTIN or SIGTTOU signals). The default action of a SIGTTOU signal is to stop
the process, but many shells override the default action to allow background processes to write to
the terminal.

Background and foreground processes use the terminal as their control terminal, but background
processes do not receive all signals from that terminal. A Ctrl-C, for example, will not cause a
SIGINT to be sent to background processes. However, a SIGHUP will be sent to all processes that
use that terminal as their control terminal, including background processes. This is so that, if a
terminal connection is broken, all processes can be noti�ed of it and killed by default. If you want
to start a background process and then logout from a session, you can use the nohup command to
run it while ignoring SIGHUP signals, as in

$ nohup do_backup &

which will let do_backup run after the terminal is closed. In this case, the do_backup program must
not read or write a terminal.

7.5 Sessions

Every process belongs to a session. More accurately, every process group belongs to a session, and
by transitivity, each process belongs to a session. Every session has a unique session-id of type
pid_t. The primary purpose of sessions is to organize processes around their controlling terminals.
When a user logs on, the kernel creates a session, places all processes and process groups of that user
into the session, and links the session to the terminal as its controlling terminal. Sessions usually
consist of a single foreground process group and zero or more background process groups. Just as
process groups have leaders, sessions have leaders. The session leader can be distinguished because
its process-id is the same as the session-id.

Processes may secede from their sessions, and unlike countries, they can do this without causing
wars. Any process other than a process group leader can form a new session and automatically be
placed into a new group as well. The new session will have no control terminal. This is exactly how
a daemon is created � it detaches itself from the session into which it was born and goes o� on its
own. Later we will see how programs can do this.

You can add output to the ps command to see the session-id by adding the "sid" output format
to the standard syntax, as in

$ ps -ouser,pid,ppid,pgrp,sid,%cpu,cputime,tty,args

7.6 The Memory Architecture of a Process

Although earlier chapters made allusions as to how a process is laid out in virtual memory, here
the process layout is described in detail. In addition, we provide a program that displays enough
information about the locations of its own symbols in virtual memory that one can infer its layout
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from them. In particular, the program will display the addresses of various local and global symbols
in hexadecimal and decimal notation. These locations are clues to how the process is laid out in its
logical address space.
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Figure 7.1: Typical layout of a process in virtual memory.

7.6.1 Overview

To start, we look at the big picture of what a process looks like in its logical address space. This
picture should enable you to construct a mental image of the physical layout of a process in its own
logical address space, how it looks in a �le, and how that �le relates to the virtual memory image
of the process. Di�erent UNIX systems use di�erent layouts for processes, but for the most part,
most modern systems adhere to a format known as the Executable and Linkable Format (ELF ).

The resources needed by a process executing in user mode include the CPU state (general purpose
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registers, program status register, stack related registers, etc.), some environment information, and
three memory segments called the text segment, the data segment, and the stack segment. The text
segment contains the program code. The stack segment is reserved for the run-time stack of the
user phase1 of the process, and the data segment is for program data. More will be said about these
below.

The resources needed when the process is executing in kernel phase include the CPU state (same
as above) as well as the resources needed for the kernel to provide the services for the process and
schedule it appropriately. These resources include the parameters to the system call, the process's
identity and properties, scheduling information, open �le descriptors, and so on. This set of kernel
resources is separated into two main structures, a process structure and a user structure, and a few
minor ones. Together these structures constitute what is usually called the process image. The
process structure and user structure are kept in kernel memory. The layout of the process address
space is shown in Figure 7.1.

The process structure contains the information that must be memory-resident even when the process
is swapped out, including the process privileges and rights, identi�ers associated with the process,
its memory map, descriptors, pending events, and maximum and current resource utilization. The
user structure contains information that is not needed in memory when the process is swapped out,
including the process control block2, accounting and statistics, and a few other pieces of information,
and is therefore swapped out along with the rest of the process.

7.6.2 The Process Structure

The kernel maintains a process structure for every running process. This structure contains the infor-
mation that the kernel needs to manage the process, such as various process descriptors (process-id,
process group-id, session-id, and so on), a list of open �les, a memory map and possibly other process
attributes. In all of the versions of UNIX with which I am familiar, this structure is known as the
process structure. In Linux, the terms process structure and task structure are used interchangeably,
and the actual data structure that represents it is the task_struct. In some versions of UNIX,
there is much less information in the process structure and more in the user structure.

Up until the introduction of threads, or so called light-weight processes (LWPs), the process structure
was a very �heavy� structure �lled with a large amount of information. One reason that the concept
of a light-weight process was invented was to reduce the amount of information associated with each
executable unit, so that they did not take up as much memory and so that creating new ones would
be faster. The process structure was redesigned in 4.4BSD to support these threads by moving
much of the information that had been in it into smaller structures that could be pointed to by
the process structure. Each thread could share the information in the substructures by pointing
to them, rather than keeping complete copies of them. This way, each thread could have its own
unique identi�ers, such as a process-id, and also have access to the shared data, such as open �les
and memory maps.

The exact information present in any process structure will vary from one implementation to another,
but all process structures minimally include

• Process id
1User phase and user mode are used interchangeably here.
2The process control block is used in UNIX only to store the state of the CPU � the contents of the registers and

so on.
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• Parent process id (or pointer to parent's process structure)

• Pointer to list of children of the process

• Process priority for scheduling, statistics about CPU usage and last priority.

• Process state

• Signal information (signals pending, signal mask, etc.)

• Machine state

• Timers

Usually the process structure is a very large object containing much more additional information.
The task structure in Linux 2.6.x, for example, may contain over 150 di�erent members. Typical
substructures referenced in the process structure may include such things as the

• Process's group id

• User ids associated with the process

• Memory map for the process (where all segments start, and so on)

• File descriptors

• Accounting information

• Other statistics that are reported such as page faults, etc.

• Signal actions

• Pointer to the user structure.

The substructure generally contains information that all threads would share, and the process
structure itself contains thread-speci�c information.

The process structure is located in kernel memory. Di�erent versions of UNIX store it in di�erent
ways. In BSD, the kernel maintains two lists of process structures called the zombie list and the
allproc list. Zombies are processes that have terminated but that cannot be destroyed, the reasons
for which will be made clear a little later in this chapter. Zombie processes have their structures on
the zombie list. The allproc list contains those that are not zombies. In Linux 2.6.x, the process or
task structures are kept in one, circular, doubly-linked list. In Solaris, the process structure is in a
struct proc_t and the collection of these are maintained in a table.

7.6.3 The User Structure

The user structure contains much less information than the process structure. The user structure
gets swapped in and out with the process; keeping it small reduces the swapping overhead. His-
torically, the most important purpose of the user structure was that it contained the per-process

execution stack for the kernel.
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Every process in UNIX needs its own, small kernel stack. When a process issues a system call and
the kernel phase begins, the kernel needs a stack for its function calls. Since the kernel might be
interrupted in the middle of servicing a call, it must be able to switch from one process's service call
to another. This implies that it needs a di�erent stack for each process. The UNIX kernel designers
carefully designed all functions in the kernel so that they are non-recursive and do not use large
automatic variables. Furthermore, they can trace the possible sequences of call chains in the kernel
so that they know exactly the largest possible stack size. Thus, unlike ordinary user programs, the
kernel itself has a known upper bound on its required stack size. Because the stack size is known
in advance, the kernel stack can be allocated in a �xed size chunk of virtual address space. This is
why, in Figure 7.1, you see that it is bounded above and below by �xed boundaries. As you can see
from the �gure, the stack is at the high end of the address space, above the environment variables
and program parameters. Its exact placement varies from one version of UNIX to another.

Depending on the version of UNIX, the user structure can contain various other pieces of information.
In BSD, the memory maps are all in the process structure or its substructures. In Linux, the user
structure, de�ned in struct user (in <user.h>) contains the memory maps. The memory maps
generally include the starting and ending addresses of the text, data, and stack segments, the various
base and limit registers for the rest of the address space, and so on1. The user structure usually
contains the process control block. This contains the CPU state and virtual memory state (page
table base registers and so on.)

7.6.4 The Text Segment

The text segment (also called the instruction segment) is the program's executable code. It is almost
always a sharable, read-only segment, shared by all other processes executing the same program.
The C compiler, by default, creates shared text segments. The advantage of using shared text
segments is not so much that it conserves memory to do so, but that it reduces the overhead of
swapping. When a process is active, its text segment resides in primary memory. There are various
reasons why the process might be swapped to secondary storage. Often it is that it issues a wait for
a slow event; in this case the system will swap it to secondary storage to make room in memory for
other more productive processes. When it becomes active again, it is brought back into memory.
Since a read-only text segment can never be modi�ed, there is no reason to copy it to secondary
storage when a process executing it is swapped out. Similarly, if a copy of a text segment already
resides in primary memory, there is no reason to copy the text segment from secondary storage into
primary memory. Thus, there is a savings in swapping overhead.

UNIX keeps track of the read-only text segment of each user process. It records the location of the
segment in secondary storage and, if it is loaded, its primary memory address, and a count of the
number of processes that are currently executing it. When a process �rst executes the segment,
the segment is loaded from secondary storage, the count is set to one, and a table entry is created.
When a process terminates, the count is decremented. When the count reaches zero, the segment
is freed and its primary and secondary memory are de-allocated.

7.6.5 The Stack Segment

The user stack segment serves as the run-time stack for the user phase of the process. That is,
when the process makes calls to other parts of the user code, the calls are stacked in this segment.
The stack segment provides storage for the automatic identi�ers and register variables, and serves

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
9

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 7 Process Architecture and Control

Prof. Stewart Weiss

its usual role of managing the linkage of subroutines called by the user process. The stack is always
�upside-down� in UNIX, meaning that pushes cause the top to become a smaller memory address.
If the stack ever meets the top of the heap, it causes an exception. In a 32-bit architecture, a
user process is typically allocated a virtual address space of 4 Gbytes. If the stack meets the heap,
the process exceeds its virtual memory allotment and it is time to port the application to a 64-bit
machine!

7.6.6 The Data Segment

The data segment is memory allocated for the program's initialized and uninitialized data. The
initialized data is separated from the uninitialized data, which is stored in a section called the bss,
which is an acronym for Block Started by Symbol, an old FORTRAN machine instruction. Initialized
data are items such as named constants and initialized static variables. They come from the symbol
table. Uninitialized data has no starting value. The system only needs to reserve the space for
them, which it does by setting the address of the top of the data segment. The data segment grows
or shrinks by explicit memory requests to shift its boundary. The system call to shift the boundary
is the brk() call; sbrk() is a C wrapper function around brk().The data segment always grows
toward the high end of memory, i.e., the brk() call increases the boundary to increase memory.
Most programmers use the C library functions malloc() and calloc() to allocate more memory
instead of the low-level brk() primitives. These C routines call brk() to adjust the size of the data
segment.

Programmers often refer to the part of memory that is used by malloc() and calloc(), the "heap".
People usually think of the heap as the part of memory that is not yet allocated, lying between the
top of the stack and the end of the bss.

7.6.7 From File to Memory

How is an executable program �le arranged and how does it get loaded? When you run the gcc

compiler and do not speci�cally name the executable �le, as in

$ gcc myprog.c

the compiler (actually the linker) creates a �le named a.out. The name a.out is short for "assembler
output" and was not just the name of the output �le, but was also name of the format of all binary
executable �les on UNIX systems for many years. The a.out �le format could be read in the a.out
man page as well as in the <a.out> header �le.

In the mid 1990's, a more portable and extensible format known as Executable and Linking Format

(ELF ) was created by the UNIX System Laboratories as part of the Application Binary Interface

(ABI ). It was later revised by the Tool Interface Standards (TIS) Committee, an industry con-
sortium that included most major companies (Intel, IBM, Microsoft, and so on). While compilers
continue to create �les named a.out, they are ELF �les on most modern machines.

The ELF speci�cation de�nes exactly how an executable �le is organized, and is general enough to
encompass three di�erent types of �les:

• Relocatable �les holding code and data suitable for linking with other object �les, to create
an executable or a shared object �le (.o �les),
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Figure 7.2: Linking and execution views of an ELF �le.

• Executable �les holding a program suitable for execution, and

• Shared object �les that can be used by the dynamic linker to create a process image (.so �les).

An ELF �le begins with a structure called the ELF header. This header is essentially a road map
to the rest of the �le. It contains identi�cation information and the addresses and sizes of the rest
of the components of the �le. An ELF �le is characterized by the fact that it contains two di�erent,
parallel, yet overlapping views: the linking view and the execution view as shown in Figure 7.2.

The linking view is the view of the �le needed by the link editor in order to link and relocate
components in the �le. Information within it is organized into sections, which contain such things
as the instructions, data, symbol table, string table, and relocation information. A section header

table serves as a table of contents for the sections and is generally located at one end of the �le.

The execution view, in contrast, is the view of the �le needed in order to execute it. It organizes
its information in segments. Segments correspond conceptually to virtual memory segments; when
the executable is loaded into memory, ELF segments are mapped to virtual memory segments.
Thus, for example, for an executable program, there is a text segment containing instructions, an
uninitialized data segment, and an initialized data segment, as well as several others. A program

header table serves as a table of contents for the segments and usually follows the ELF header.

Neither the sections nor the segments in the �le have to be in any particular order because the
tables de�ne their positions. The two separate views are overlapped in the �le, as shown in Figure
7.3. The �gure also shows that segments can consist of multiple sections.

The symbol table is a table that the compiler creates to map symbolic names to logical addresses
and store the attributes of these symbols. The compiler uses the table to construct the code, but in
addition, it is the symbol table that makes it possible for a debugger to associate memory addresses
with the names of variables. When the debugger runs, the symbol table is loaded into memory with
the program. The string table is a table containing all of the strings used in the program. The
strings command is a handy command to know about � it displays a list of all of the strings in a
binary �le. The strings command works because the string table is part of the �le and the command
simple has examine it.
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Section header table

.data

.rodata

...

ELF header

.text

Program header table

...

Figure 7.3: Overlapped views of the ELF �le.

The readelf command can be used to examine an executable �le.

$ readelf [options] elffile ...

The information displayed depends upon the options provided on the command line. With -a, all
information is provided. The -h option displays the contents of the ELF header (in human readable
form of course):

$ readelf -h /bin/bash

ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

Data: 2's complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Intel 80386

Version: 0x1

Entry point address: 0x805c7b0

Start of program headers: 52 (bytes into file)

Start of section headers: 733864 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)

Size of program headers: 32 (bytes)
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Number of program headers: 8

Size of section headers: 40 (bytes)

Number of section headers: 32

Section header string table index: 31

You can see from this output that the ELF header has information about the executable's format:
32-bit, 2's complement, for Intel 80386 on UNIX System V. It also has the location of the program
header (byte 52 into the �le) and the section header table (733864 bytes into the �le).

The file command uses the ELF header to provide its output:

$ file /bin/bash

/bin/bash: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),

dynamically linked (uses shared libs), for GNU/Linux 2.6.9, stripped

You can experiment with some of the executables to see how much you can learn about the structure
of executable programs.

Notice in the output above that the entry point address of the executable is 0x805c7b0. This is
the address of the �rst executable instruction in the bash executable. The starting virtual address
is not 0. In modern UNIX systems, the starting address is always after 0x8048000. The addresses
below that are reserved for the system to use. One reason for this is that the debugger will run in
the lower addresses when the program runs under the debugger.

Figure 7.4 shows the virtual addresses of a hypothetical executable, taken from a version of the
ELF standard. Notice in this example that the text segment is not at the start of the virtual
address space, and that each segment is padded as needed so that it aligns on 0x1000 (4096) byte
boundaries, because page sizes are 4096 bytes. Notice too that the data segment and uninitialized
data segment follow the text segment.

7.6.8 A Program To Display The Virtual Memory Boundaries

In this section we will explore the virtual address space of a process with the aid of a program that
I found in a book on interprocess communication [1] and subsequently modi�ed. It displays the
boundaries of the di�erent components of the virtual address space of its executable image. The
program declares the following types of memory objects:

• Global, initialized pointer variable: cptr

• Global uninitialized string: buffer1

• Automatic variable in main program: i

• Parameters to main program: argc, argv, envp

• Static uninitialized local in main program: diff

• Main function main()

• Non-main function showit()
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Figure 7.4: Example of ELF process image segments.

• Automatic pointer variable, dynamically allocated: buffer2

• Automatic variable in non-main function: num

It displays the locations of each of these objects as hexadecimal and decimal virtual addresses. The
locations of these objects will lie within the ranges that are speci�ed by the text, data, and stack
segment positions described earlier. For example, the location of the uninitialized global buffer1
and the initialized global *cptr will be between the �rst and last addresses of the data segment, one
in the bss and the other, not. The remaining variables each pinpoint the location of a particular
segment: "Hello World", the pointer variable cptr itself, the symbols main() and showit(), which
are globals, and the local variables num and buffer2 in showit(). The location of a local variable,
which is supposed to be on the run-time stack, will show where that stack is in virtual memory.

Three external integer variables etext, edata, and end are de�ned in global scope in the C library
and may be accessed by any C program3. They are boundaries of three speci�c segments:

etext The address of etext is the �rst location after the program text.

edata The address of edata is the �rst location after the initialized data region.

end The address of end is the �rst location after the uninitialized data region.

The value of etext is an upper bound on the size of the executable image. The initialized and
uninitialized data regions are the regions where constants and globals are stored. Uninitialized data

3They may be declared as macros.
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are globals whereas initialized data are constants. These symbols are incorporated into the program,
displayed in Listing 7.1.

Listing 7.1: displayvm.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <uni s td . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
/∗ Global Constants ∗/
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#de f i n e SHW_ADR(ID , I ) \
p r i n t f (" %s \ t i s at addr :%8X\ t%20u\n" ,\

ID , ( unsigned i n t )(& I ) , ( unsigned i n t )(& I ) )

/∗ These are system var i ab l e s , de f i ned in the un i s td . h header f i l e ∗/
extern i n t etext , edata , end ;

char ∗ cptr = "He l lo World\n " ; /∗ cptr i s an i n i t i a l i z e d g l oba l ∗/
char bu f f e r 1 [ 4 0 ] ; /∗ u n i n i t i a l i z e d g l oba l ∗/

void showit ( char ∗ ) ; /∗ Function prototype −− has no s to rage ∗/

i n t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i n t i = 0 ; /∗ on stack ∗/
s t a t i c i n t d i f f ; /∗ g l oba l in u n i n i t i a l i z e d data segment ∗/

s t r cpy ( bu f f e r1 , " Layout o f v i r t u a l memory\n " ) ;
wr i t e (1 , bu f f e r1 , s t r l e n ( bu f f e r 1 )+1);

p r i n t f ("Adr e t ex t : %8X \ t Adr edata : %8X \ t Adr end : %8X \n\n" ,
( unsigned i n t )&etext , ( unsigned i n t ) &edata , ( unsigned i n t ) &end ) ;

p r i n t f (" ID \ t HEX_ADDR\ t DECIMAL_ADDR\n " ) ;
SHW_ADR("main " , main ) ;
SHW_ADR(" showit " , showit ) ;
SHW_ADR(" e t ex t " , e t ex t ) ;
d i f f = ( i n t ) &showit − ( i n t ) &main ;
p r i n t f (" showit i s %d bytes above main\n" , d i f f ) ;
SHW_ADR(" cptr " , cpt r ) ;
d i f f = ( i n t ) &cptr − ( i n t ) &showit ;
p r i n t f (" cptr i s %d bytes above showit \n" , d i f f ) ;
SHW_ADR(" bu f f e r 1 " , bu f f e r 1 ) ;
SHW_ADR(" d i f f " , d i f f ) ;
SHW_ADR(" edata " , edata ) ;
SHW_ADR(" end " , end ) ;
SHW_ADR(" argc " , argc ) ;
SHW_ADR(" argv " , argv ) ;
SHW_ADR(" envp " , envp ) ;
SHW_ADR(" i " , i ) ;
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showit ( cptr ) ;
r e turn 0 ;

}
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void showit ( char ∗ p)
{

char ∗ bu f f e r 2 ;
SHW_ADR(" bu f f e r 2 " , bu f f e r 2 ) ;
i f ( ( bu f f e r 2= ( char ∗) mal loc ( ( unsigned ) ( s t r l e n (p)+1))) != NULL){

s t r cpy ( bu f f e r2 , p ) ;
p r i n t f ("%s " , bu f f e r 2 ) ;
f r e e ( bu f f e r 2 ) ;

}
e l s e {

p r i n t f (" A l l o ca t i on e r r o r . \ n " ) ;
e x i t ( 1 ) ;

}
}

When you run this program, you should get output similar to the following. The last column is the
decimal value of the location. Notice that i in main() and buffer2 in showit() are high addresses.
They are in the stack. Notice that envp, which is a pointer to an array of strings, is above the
stack, as Figure 7.1 depicts. Notice that the addresses of these descend, because the stack grows
downward. Notice too that diff in main() and buffer1 lie between edata and end, showing that
they are in the uninitialized data region, but that cptr is between etext and edata because it is
initialized. You should see that buffer1 is the last variable in the bss, since it is 40 bytes long and
its address is 40 bytes from the end. Also, notice that the address of etext is the same as the value
of etext. This is because etext is not a real variable. It is just a mnemonic name for the actual
location, as determined by the linker.

Layout o f v i r t u a l memory
Adr e t ex t : 8048958 Adr edata : 8049C90 Adr end : 8049CE8

ID HEX_ADDR DECIMAL_ADDR
main i s at addr : 8048544 134513988
showit i s at addr : 8048806 134514694
e t ex t i s at addr : 8048958 134515032

showit i s 706 bytes above main
cptr i s at addr : 8049C8C 134519948

cptr i s 5254 bytes above showit
bu f f e r 1 i s at addr : 8049CC0 134520000
d i f f i s at addr : 8049CA8 134519976
edata i s at addr : 8049C90 134519952
end i s at addr : 8049CE8 134520040
argc i s at addr :BF9ECDC0 3214855616
argv i s at addr :BF9ECDC4 3214855620
envp i s at addr :BF9ECDC8 3214855624
i i s at addr :BF9ECD9C 3214855580
bu f f e r 2 i s at addr :BF9ECD6C 3214855532

He l lo World

Notice that the main program starts at virtual address 0x08048544. The start of the virtual address
space is at 0x08048000. The di�erence is 1348 bytes. If you look at the output of the readelf
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-a command, you will see that there are several sections of code that reside in this small pocket
before the main program. There you will �nd the code that must be run before main() starts (what
I like to call the "glue" routine), the code that runs when the program �nishes, and special code
for dynamic linking and relocation. When a program starts, before the operating system transfers
control to the program, there are initializations and possible linking and relocation; the code there
serves that purpose.

7.7 Creating New Processes Using fork

Now that you have a better idea of what processes actually are, we can start exploring their world.
We will begin with process creation, since that is, after all, the beginning of all things.

Once the operating system has bootstrapped itself, the only way for any process to be created is
via the fork() system call4. All processes are created with fork():

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

The fork() call is a hard one to accept at �rst; you probably have never seen a function quite like
it before. It is very appropriately named, because the statement

pid_t processid = fork();

causes the kernel to create a new process that is almost an exact copy of the calling process, such
that after the call, there are two processes, each continuing its execution at the point immediately
after the call in the executing program! So before the instruction is executed, there is a single
process about to execute the instruction, and by the time it has returned, there are two. There has
been a fork in the stream of instructions, just like a fork in a road. It is almost like process mitosis.

The process that calls fork() is called the parent process and the new one is the child process. They
are distinguished by the values returned by fork(). Each process is able to identify itself by the
return value. The value returned to the parent is the process-id of the newly created child process,
which is never 0, whereas the value returned to the child is 0. Therefore, each process simply needs
to test whether the return value is 0 to know who it is. The child process is given an independent
copy of the memory image of the parent and the same set of resources. It is essentially a clone of the
parent and is almost identical in every respect5. Unlike cellular mitosis though, it is not symmetric.

The typical use of the fork() call follows the pattern

processid = fork();

4This is a simpli�cation. There are other system calls, depending on the version of UNIX. For example, Linux

revived the old BSD vfork() system call, which was introduced in 3.0BSD and later removed in 4.4BSD for good

reason. Linux also provides a clone() library function built on top of the kernel's sys_clone() function. Section

7.7.1 below.
5There are a few minor di�erences. For example, a call to getppid() will return di�erent values, since this returns

the process-id of the parent process.
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if (processid == 0)

// child's code here

else

// parent's code here

The true branch of the if-statement is code executed by the child and not by the parent. The false
branch is just the opposite. This may seem like a useless way to create processes, since they always
have to share the same code as the parent, so they do nothing di�erent. The fork() call is valuable
when used with exec() and wait(), as will be shown shortly.

Our �rst example, forkdemo1.c, in Listing 7.2 demonstrates a bit about how fork() works.

Listing 7.2: forkdemo1.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

in t g l oba l = 10 ;

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t l o c a l = 0 ;
pid_t pid ;

p r i n t f (" Parent p roce s s : ( Before f o rk ( ) ) " ) ;
p r i n t f (" l o c a l = %d , g l oba l = %d \n" , l o c a l , g l oba l ) ;

i f ( ( pid = fo rk ( ) ) == −1 ) {
pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid ) {

/∗ ch i l d execute s t h i s branch ∗/
p r i n t f (" After the f o rk in the ch i l d : " ) ;
l o c a l++;
g l oba l++;
p r i n t f (" l o c a l = %d , g l oba l = %d\n" , l o c a l , g l oba l ) ;

}
e l s e {

/∗ parent execute s t h i s branch ∗/
s l e e p ( 2 ) ; /∗ s l e e p long enough f o r ch i ld ' s output to appear ∗/

}

/∗ both p ro c e s s e s execute t h i s p r i n t statement ∗/
p r i n t f (" pid = %d , l o c a l = %d , g l oba l = %d \n" ,

ge tp id ( ) , l o c a l , g l oba l ) ;

r e turn 0 ;
}

In this program, the return value from fork() is stored in pid, which is tested in the if-statement.
fork() returns -1 on failure, and one should always check whether it failed or not.
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The child's code is the next branch, in which 0 == pid is true. The child increments the values of
two variables, one, global, declared globally and one, local, locally in main(). It then prints out
their values, jumps over the parent code and executes the printf(), obtaining its process-id using
the getpid() system call and displaying the values of local and global again.

In the meanwhile, the parent sleeps for two seconds, enough time so that the child's output will
appear �rst. It then executes the printf(), obtaining its process-id using the getpid() system call
and displaying the values of local and global. The sleep() prevents intermingling of the output,
which can happen because the child shares the terminal with the parent.

Bearing in mind that the child is given a copy of the memory image of the parent, what should the
output of the parent be? Hopefully you said that local = 0 and global = 10. This is because the
child changed their values in the copy of the memory image, not in a shared memory. The point of
this program is simply to demonstrate this important fact.

Let us make sure we understand fork() arithmetic before continuing. Before running the program
forkdemo2.c shown in Listing 7.3, predict the number of lines of output. Do not redirect the output
or pipe it. This will be explained afterward.

Listing 7.3: forkdemo2.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t i ;
p r i n t f ("About to c r e a t e many p ro c e s s e s . . . \ n " ) ;
f o r ( i = 0 ; i < N; i++ )

i f ( −1 == fo rk ( ) )
e x i t ( 1 ) ;

p r i n t f (" Process id = %d\n" , getp id ( ) ) ;
f f l u s h ( stdout ) ; /∗ f o r c e output be f o r e s h e l l prompt ∗/
s l e e p ( 1 ) ; /∗ g ive time to the s h e l l to d ip lay prompt ∗/
return 0 ;

}

Did you correctly predict?

Each time the bottom of the loop is reached, the number of processes in existence is twice what
it was before the loop was entered, because each existing process executes the fork() call, making
a copy of itself. If N were 1, the loop would execute once and there would be 2 processes, each
printing their process ids to the screen. If N were 2, the loop would execute a second time, and the
2 processes would make 2 more, 4 in total. In general, there will be 2N processes when the loop
�nishes, and that many lines of output on the screen, together with the �rst line,

About to create many processes...

for a total, when N = 4, of 17 lines. Now try redirecting the output of the program to wc, to make
it easier to count how many lines are there.
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$ forkdemo2 | wc

32 144 832

$

Why are there 32 lines and not 17? Try instead redirecting the output to a �le and looking at it
there:

$ forkdemo2 > temp; wc temp

24 108 624 temp

$

If you look at the �le temp, you will see something like

About to create many processes...

Process id = 6708

About to create many processes...

Process id = 6707

About to create many processes...

Process id = 6717

About to create many processes...

Process id = 6709

About to create many processes...

Process id = 6716

...

and there will be fewer than 16 lines with process ids. So what is going on here? Why is that line
replicated for each process and why are there fewer than 16 lines stating the process ids?

• Remember this important fact about fork(): when a process is created by a call to fork(),
it is an almost exact duplicate of the original process. In particular it gets copies of all open
�le descriptors and naturally, all of the process's user space memory image.

• What this means is that when a child process is created, its standard output descriptor points
to the same open �le structure as the parent and all other processes forked by the parent, and
therefore the children and parent share the �le position pointer.

• Operations such as printf() are part of the C I/O library and act on objects of type FILE,
which are called streams. The C I/O Library uses stream bu�ering for all operations that act
of FILE streams. (We noted this in Chapter 5.) There are three di�erent kinds of bu�ering
strategies:

� Unbu�ered streams: Characters written to or read from an unbu�ered stream are trans-
mitted individually to or from the �le as soon as possible.

� Line bu�ered streams: Characters written to a line bu�ered stream are transmitted to
the �le in blocks when a newline character is found.

� Fully bu�ered streams: Characters written to or read from a fully bu�ered stream are
transmitted to or from the �le in blocks of arbitrary size.
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• By default, when a stream is opened, it is fully bu�ered, except for streams connected to
terminal devices, which are line bu�ered.

• The bu�ers created by the C I/O Library are in the process's own address space, not the
kernel's address space. (When your program calls a function such as printf(), the library is
linked into that program; all memory that it uses is in its virtual memory.) This means that
when fork() is called, the child gets a copy of the parent's library bu�ers, and all children
get copies of these bu�ers. They are not shared ; they are duplicated.

• The C I/O library �ushes all output bu�ers

� When the process tries to do output and the output bu�er is full.

� When the stream is closed.

� When the process terminates by calling exit().

� When a newline is written, if the stream is line bu�ered.

� Whenever an input operation on any stream actually reads data from its �le.

� When fflush() is called on that bu�er.

• As a corollary to the preceding statement, until the bu�er has been �ushed, it contains all
characters that were written to it since the last time it was �ushed.

• No C I/O Library function is atomic. It is entirely possible that output can be intermingled
or even lost if the timing of calls by separate processes sharing a �le position pointer leads to
this.

Now we put these facts together. The forkdemo2 program begins with the instruction

printf("About to create many processes...\n");

If output has not been redirected, then stdout is pointed to a terminal device and it is line bu�ered.
The string "About to create many processes...\n" is written to the terminal and removed from
the bu�er. When the process forks the children, they get empty bu�ers and write their individual
messages to the terminal. Unless by poor timing a line is written over by another process, each
process will produce exactly one line of output. It is quite possible that this will happen if there are
a large enough number, N , of processes, as the probability of simultaneous writes increases rapidly
towards 1.0 as N increases.

Let us do a bit of mathematical modeling. The printf() instruction

printf("Process id = %d\n", getpid());

writes to standard output. If the fraction of time that each process spends in the portion of
the printf() function in which a race condition might occur is p, then there is a probability of
1−(1−p)N that at least two processes are in that portion of code at the same time. If, for example,
p = 0.05 and N = 16, then the probability of a race (and hence lost output) is 1 − 0.9516 u 0.56.
If N = 32, it is 0.81 and when N = 64, it is 0.96. So you see that as the number of processes
increases, it becomes almost inevitable that lines will be lost, regardless of whether they are written
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to the terminal or to a di�erent �le descriptor, because the race condition is independent of how
the output stream is bu�ered.

If standard output is redirected to a �le or to a pipe, it no longer points to a terminal device and
the library will fully bu�er it instead of line bu�ering it. The block size used for bu�ering is much
larger than the total size of the strings given to the printf() function. The consequence is that the
string "About to create many processes...\n" will remain in the bu�ers of all child processes
when they are forked, and when they each call

printf("Process id = %d\n", getpid());

fflush(stdout);

each line of the output will be of the form

About to create many processes...

Process id = 8810

and there will be twice as many lines written as there were to the terminal.

Since the command

forkdemo2 | wc

redirects the standard output of forkdemo2 to a pipe, wc will see twice as many lines as appear on
the terminal. Similarly, the command

forkdemo2 > temp

redirects the standard output to a �le, and the �le will contain twice as many lines as what appears
on the terminal.

The foregoing statement about the output to the �le is true only if the executions of the printf()

instructions do not overlap and no output is lost. We return to this issue shortly. The claim
regarding the pipe is unconditionally true.

How can we make the behavior of the program the same regardless of whether it is to a terminal or
is redirected? We can force the �rst string to be �ushed from the bu�er by calling fflush(stdout).
Since there is no need to do this if it is a terminal, we can insert the two lines

if ( !isatty(fileno(stdout)) );

fflush(stdout);

just after the �rst printf().

What about the problem of lost output? How can we prevent this race condition? The answer is
that we must not use the stream library but must use the lower level write() system call and �le
descriptors. Writes are unbu�ered and we can set the O_APPEND �ag on �le descriptor 1 so that the
race condition is eliminated. (Recall from Chapter 4 that this is how writes to the utmp �le avoid
race conditions.)

To use write(), we must �rst create the output string using the sprintf() function:
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char str[32];

sprintf(str, "Process id = %d\n", getpid());

Then we can call write():

write(1, str, strlen(str));

But �rst we must start the program by setting O_APPEND on standard output's descriptor:

int flags;

flags = fcntl(1, F_GETFL);

flags |= (O_APPEND);

if (fcntl( 1, F_SETFL,flags) == -1 )

exit(1);

This solves the problems. The corrected program is listed below.

Listing 7.4: forkdemo3.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <f c n t l . h>
#inc lude <termios . h>

in t main ( i n t argc , char ∗ argv [ ] )
{

i n t i ;
i n t N;
char s t r [ 3 2 ] ;
i n t f l a g s ;

/∗ Put standard output in to atomic append mode ∗/
f l a g s = f c n t l (1 , F_GETFL) ;
f l a g s |= (O_APPEND) ;
i f ( f c n t l ( 1 , F_SETFL, f l a g s ) == −1 )

e x i t ( 1 ) ;

/∗ Get the command l i n e va lue and convert to an i n t .
I f none , use d e f au l t o f 4 . I f i nva l i d , e x i t . ∗/

N = ( argc > 1 )? a t o i ( argv [ 1 ] ) : 4 ;
i f ( 0 == N )

ex i t ( 1 ) ;

/∗ Print a message and f l u s h i t i f t h i s i s not a te rmina l ∗/
p r i n t f ("About to c r e a t e many p ro c e s s e s . . . \ n " ) ;
i f ( ! i s a t t y ( f i l e n o ( stdout ) ) )

f f l u s h ( stdout ) ;
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/∗ Now fo rk the ch i l d p r o c e s s e s . Check return va lues and e x i t
i f we have a problem . Note that the e x i t ( ) may be executed
only f o r some ch i l d r en and not o the r s . ∗/

f o r ( i = 0 ; i < N; i++ )
i f ( −1 == fo rk ( ) )

e x i t ( 1 ) ;

/∗ Create the output s t r i n g that the proce s s w i l / write , and wr i t e us ing
system c a l l . ∗/

s p r i n t f ( s t r , " Process id = %d\n" , getp id ( ) ) ;
wr i t e (1 , s t r , s t r l e n ( s t r ) ) ;
f f l u s h ( stdout ) ; /∗ to f o r c e output be f o r e s h e l l prompt ∗/
s l e e p ( 1 ) ; /∗ to g ive time to the s h e l l to d ip lay prompt ∗/
return 0 ;

}

7.7.1 Other Versions of fork()

The vfork() system call is a di�erent version of the fork() call that is designed to be more e�cient.
Rather than making a complete copy of the address space of the old process, the vfork() call creates
a new process without copying the data and stack segments of the parent and instead allows the
child process to share these. This saves time and memory but also raises the possibility that the
child will inadvertently corrupt the state of the parent process. It is not intended to be used to allow
the child and parent to share data; on the contrary, its purpose is to avoid the extensive memory
copying in the case that the child will replace its code anyway using exec() (to be discussed soon.)

There is also a clone() system call in Linux systems. The clone() function, which is technically a
library routine wrapping a system call, allows the child to share the address space with its parent,
and also lets the programmer pass a function and arguments for the child to execute. We will look
at it in detail later.

7.7.2 Synchronizing Processes with Signals

The next program, synchdemo1.c, demonstrates how to use fork() and signals to synchronize a
child and its parent.

Listing 7.5: synchdemo1.c

#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s i g n a l . h>
#inc lude <sys / types . h>
#inc lude <sys /wait . h>

void c_action ( i n t signum )
{

/∗ nothing to do here ∗/
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid ;
i n t s t a tu s ;
s t a t i c s t r u c t s i g a c t i o n ch i ldAct ;

switch ( pid = fo rk ( ) ) {
case −1:

/∗ f o rk f a i l e d ! ∗/
pe r ro r (" f o rk ( ) f a i l e d ! " ) ;
e x i t ( 1 ) ;

case 0 : {
/∗ ch i l d execute s t h i s branch ∗/
/∗ s e t SIGUSR1 ac t i on f o r ch i l d ∗/
i n t i , x=1;
ch i ldAct . sa_handler = c_action ;
s i g a c t i o n (SIGUSR1 , &chi ldAct , NULL) ;
pause ( ) ;
p r i n t f (" Child p roce s s : s t a r t i n g computation . . . \ n " ) ;
f o r ( i = 0 ; i < 10 ; i++ ) {

p r i n t f ("2^%d = %d\n" , i , x ) ;
x = 2∗x ;

}
e x i t ( 0 ) ;

}
d e f au l t :

/∗ parent code ∗/
p r i n t f (" Parent p roce s s : "

"Wil l wait 2 seconds to prove ch i l d wait s . \ n " ) ;
s l e e p ( 2 ) ; /∗ to prove that ch i l d waits f o r s i g n a l ∗/
p r i n t f (" Parent p roce s s : "

"Sending ch i l d no t i c e to s t a r t computation . \ n " ) ;
k i l l ( pid , SIGUSR1 ) ;

/∗ parent wait s f o r c h i l d to re turn here ∗/
i f ( ( pid = wait(& s ta tu s ) ) == −1)
{

pe r ro r (" wait f a i l e d " ) ;
e x i t ( 2 ) ;

}
p r i n t f (" Parent p roce s s : c h i l d terminated . \ n " ) ;
e x i t ( 0 ) ;

}
}

Comments.

• First note that the style of this program is slightly di�erent. It uses the switch statement to
distinguish the failed fork(), child, and parent.

• The SIGUSR1 signal is a signal value that is reserved for user programs to use as they choose.
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In this program, we can use it to synchronize two processes. One process delays itself using
pause(), and waits for a signal to arrive. The second sends the signal to wake up the �rst.
The signal handler does not have to do anything special in this case.

• The parent calls wait(), a function we will explore shortly. The wait() call makes the parent
wait until the child terminates or is killed.

• The program displays output on the terminal just to demonstrate how the signaling works.

The next demo, synchdemo2.c, is a little more interesting than the preceding one. It demonstrates
how the parent and child can work in lockstep using the SIGUSR1 signal. It also shows that the
child process inherits the open �les of the parent, and that writes by the child and parent to the
same descriptor advance the shared �le position pointer.

Listing 7.6: synchdemo2.c

#inc lude <sys / types . h>
#inc lude <sys / s t a t . h>
#inc lude <f c n t l . h>
#inc lude <uni s td . h>
#inc lude <s i g n a l . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void p_action ( i n t s i g ) ;
void c_action ( i n t s i g ) ;
void on_sig int ( i n t s i g ) ;
/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t nS igna l s = 0 ;
v o l a t i l e sig_atomic_t s i g i n t_r e c e i v ed = 0 ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid , ppid ;

s t a t i c s t r u c t s i g a c t i o n parentAct , ch i ldAct ;
i n t fd ;
i n t counter = 0 ;
char ch i l dbu f [ 4 0 ] ;
char parentbuf [ 4 0 ] ;

i f ( argc < 2 ) {
p r i n t f (" usage : synchdemo2 f i l ename \n " ) ;
e x i t ( 1 ) ;

}

i f ( −1 == ( fd = open ( argv [ 1 ] , O_CREAT|O_WRONLY|O_TRUNC, 0644 ) ) )
{

pe r ro r ( argv [ 1 ] ) ;
e x i t ( 1 ) ;
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}
switch ( pid = fo rk ( ) ) {
case −1:

pe r ro r (" f a i l e d " ) ;
e x i t ( 1 ) ;

case 0 :
/∗ s e t ac t i on f o r c h i l d ∗/
ch i ldAct . sa_handler = c_action ;
s i g a c t i o n (SIGUSR1 , &chi ldAct , NULL) ;
ppid = getppid ( ) ; /∗ get parent id ∗/
f o r ( ; ; ) {

s p r i n t f ( ch i ldbu f , "Child counter = %d\n" , counter++);
wr i t e ( fd , ch i ldbu f , s t r l e n ( ch i l dbu f ) ) ;
p r i n t f (" Sending s i g n a l to parent −− " ) ;
f f l u s h ( stdout ) ;
k i l l ( ppid , SIGUSR1 ) ;
s l e e p ( 3 ) ;

}

d e f au l t :
/∗ s e t SIGUSR1 ac t i on f o r parent ∗/
parentAct . sa_handler = p_action ;
s i g a c t i o n (SIGUSR1 , &parentAct , NULL) ;

/∗ s e t SIGINT handler f o r parent ∗/
parentAct . sa_handler = on_sig int ;
s i g a c t i o n (SIGINT , &parentAct , NULL) ;

f o r ( ; ; ) {
s l e e p ( 3 ) ;
s p r i n t f ( parentbuf , "Parent counter = %d\n" , counter++);
wr i t e ( fd , parentbuf , s t r l e n ( parentbuf ) ) ;
p r i n t f (" Sending s i g n a l to ch i l d −− " ) ;
f f l u s h ( stdout ) ;
k i l l ( pid , SIGUSR1 ) ;
i f ( s i g i n t_r e c e i v ed ) {

c l o s e ( fd ) ;
e x i t ( 0 ) ;

}
}

}
}

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

void p_action ( i n t s i g )
{

p r i n t f (" Parent caught s i g n a l %d\n" , ++nS igna l s ) ;
}

void c_action ( i n t s i g )
{

p r i n t f (" Child caught s i g n a l %d\n" , ++nS igna l s ) ;
}
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void on_sig int ( i n t s i g )
{

s i g i n t_r e c e i v ed = 1 ;
}

Comments.

• Writes to the �le are in lockstep and there is no race condition because of the arrangement of
the sleep() and kill() calls in the child and parent. The parent writes after it is awakened
from its sleep() and before it signals the child, whereas the child writes before it signals the
parent the �rst time, and then after it is awakened by the parent. If the parent is writing, the
child must be sleeping, and vice verse.

• The use of the sleep() instead of pause() prevents deadlock. Had we used pause(), then
there would be a very small but nonzero probability that one process could issue a kill() to
the other and, before it then executes its pause(), the other is woken up, executes all of its
code and issues a kill() to the �rst one. In this case, the signal would be lost, because it
happened before the pause(). That process would then be blocked waiting for a second signal
to wake it, but the other process will enter its pause() and never be able to send that signal.
They are thus deadlocked. The sleep() will eventually terminate, so nether process will wait
inde�nitely.

• The call to fflush() is needed to force writes to the screen by each process to happen
immediately, otherwise they will occur in the wrong order.

• The main program has a SIGINT handler so that the program can clean up after itself. When
Ctrl-C is typed, both the parent and the child will receive it. The parent closes the open �le
descriptor before exiting, and the child is automatically killed.

We now turn to the question of how a process can change the code it executes.

7.8 Executing Programs: The exec family

Being able to create a new process is not so useful unless that new process has a way to execute a
di�erent program. The exec() family of calls ful�lls that purpose. All versions of the exec() call
have one thing in common � they cause the calling process to execute a program named in one way
or another in the argument list, and they all are library wrappers for the execve() system call.

7.8.1 The execve() System Call

The man page for the execve() system call de�nes it as follows:

#include <unistd.h>

int execve(const char *filename, char *const argv[],

char *const envp[]);
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execve() executes the program pointed to by its �rst argument. The �lename must be a binary
executable or a script whose �rst line is

#! interpreter [optional-arg]

The �lename must be the absolute pathname or relative pathname of the program. execve()

does not look at the PATH environment variable to resolve command names. The second and third
arguments are NULL-terminated arrays of arguments and environment strings respectively. In other
words, each is an array of strings followed by a NULL pointer. The environment strings are expected
to be in the proper format: key=value.

You should remember that arrays are sometimes called vectors by computer scientists, and that
the reason that the name of this system call is execve is that it expects vectors as its second and
third arguments. In particular, you need to remember that execve() will pass these vectors to the
program being executed, which will be able to access them in its own argument list:

int main( int argc, char* argv[], char* envp[])

Since all programs expect the program name in argv[0] and the �rst real argument in argv[1], it is
important that you arrange the argument list to satisfy this condition before you invoke execve().
The examples will demonstrate.

The man page provides all of the details about the call. In general, execve() causes the stack,
data segment, bss, and text segment to be replaced, and pretty much clears all signals and closes
anything the process had open before the call except for �le descriptors, which remain open. The
current working directory remains the same. Because the same process continues to execute, process
relationships are also preserved. For the details consult the man page.

To start we will look at how to use the execve() system call, after which we will look at the di�erent
wrappers for it. The �rst program, execdemo1.c, is in Listing 7.7 below.

Listing 7.7: execdemo1.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>

in t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i f ( argc < 2 ) {
p r i n t f (" usage : execdemo1 arg1 [ arg2 . . . ] \ n " ) ;
e x i t ( 1 ) ;

}
execve ("/ bin / echo " , argv , envp ) ;
f p r i n t f ( s tde r r , " execve ( ) f a i l e d to run . \ n " ) ;
e x i t ( 1 ) ;

}

This program calls execve(), passing /bin/echo as the program to run, followed by its own com-
mand line arguments and environment strings. These are passed to /bin/echo. This program works
correctly even though argv[0] contains the string "execdemo1" and not "echo" because echo pretty
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much ignores argv[0] and only starts paying attention to arguments starting with argv[1]. This
is not the best way to use execve() � it only works in a few circumstances.

Are you wondering about the printf() after the call? The printf() statement will only be executed
if the execve() call fails; the only reason that execve() returns is failure to execute the program.

The next program, execvedemo2.c, uses execve() to execute the �rst command line argument of
the program, passing to it the remaining arguments from the command line. In other words, if we
supply a line like

$ execvedemo2 /bin/ls -l ..

it will execute it as if you typed the /bin/ls -l .. on a line by itself.

Listing 7.8: execvedemo2.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>

in t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i f ( argc < 2) {
f p r i n t f ( s tde r r , "Usage : %s program args \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
execve ( argv [ 1 ] , argv+1, envp ) ;
f p r i n t f ( s tde r r , " execve ( ) f a i l e d to run . \ n " ) ;
e x i t ( 1 ) ;

}

Notice that it uses pointer arithmetic to pass the array argv[1 .. argc-1] rather than argv[0

.. argc-1].

7.8.2 The exec() Library Functions

Because it is a little inconvenient to arrange everything for execve(), the designers of UNIX created
a family of �ve functions that act as front-ends to execve(), each expecting a di�erent set of
parameters. They are

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg,..., char* const envp[]);

int execv(const char *path, char * const argv[]);

int execvp(const char *file, char * const argv[]);

Each of these contains either an 'l' or a 'v' in its name. The versions that contain an 'l', execl(),
execlp() and execle(), expect a null-terminated list of null-terminated string arguments whereas
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the versions that contain a 'v', execv() and execvp(), expect a vector of null-terminated string
arguments. All versions cause the kernel to load the executable �le whose name is either path
or �le, given above, overlaying the current program for the process, and passing it the remaining
arguments.

The functions are also characterized by whether or not they contain a 'p' in their names. The
versions that contain a 'p', execlp() and execvp(), expect the �rst argument to be a simple �le
name rather than a full path name, whereas the ones that do not contain a 'p': execl(), execle(),
and execv(), require the full pathname for the �rst argument. The versions containing the 'p' will
use the PATH environment variable to search for the �le whose name is supplied, provided it does
not contain any slashes. If it has a slash, then that is treated as a pathname, either relative or
absolute, to the �le to be loaded.

For all of these functions, the parameters named arg or argv above that follow the path or �le
parameter are passed to the executable as its own arguments. The �rst of these arguments must be
a pointer to the executable �le, because in UNIX, by convention, the �rst argument to a program
(argv[0]) is always the name of the program itself, stripped of the preceding pathname. For
example, to execute "/bin/ls -l" using execl(), you would use the syntax

execl( �/bin/ls�, �ls�, �-l�, (char *) 0);

In other words, the name of the executable occurs twice � �rst with the full pathname, and second
with just the name of the �le itself.

The di�erences between the di�erent versions can be summarized as follows:

execl, execle, execlp expect the arguments to be presented as a comma-separated
list of strings, terminated by a NULL pointer cast to a string,
as in

execl( �/bin/ls�, �ls�, �-l�, (char *) 0);

execv, execvp expect the arguments to be presented as a vector (array )
whose last element is a NULL pointer as in:

strcpy(argvec[0], "ls");

strcpy(argvec[1], "-l");

argvec[2] = NULL;

execv( "/bin/ls", argvec );

execlp, execvp do not require a full path name:

execlp( �ls�, �ls�, �-l�, (char *) 0);

strcpy(argvec[0], "ls");

strcpy(argvec[1], "-l");

argvec[2] = NULL;

execvp( "ls", argvec );

execle is the same as execl() except that it has a third argument
that is an array of pointers to environment strings exactly as
execve() expects, with a NULL pointer as its last entry.
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The functions other than execle() obtain the environment settings for the new process from the
values in the external environ variable.

To illustrate , the following program, execvpdemo.c, uses its �rst argument as the executable to
run, and the remaining arguments as its arguments.

Listing 7.9: execvpdemo.c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>

in t main ( i n t argc , char ∗ argv [ ] , char ∗ envp [ ] )
{

i f ( argc < 2) {
f p r i n t f ( s tde r r , "Usage : %s program args \n" , argv [ 0 ] ) ;
e x i t ( 1 ) ;

}
execvp ( argv [ 1 ] , argv +1 ) ;
pe r ro r (" execvp " ) ;
e x i t ( 1 ) ;

}

Since it searches the PATH environment variable, it can be called, for example, with

$ execvpdemo cp origfile newfile ..

7.9 Synchronizing Parents and Children: wait and exit

7.9.1 Exit() Stage Left

We have used the exit() function many times in various programs, but the only reason for doing
so was that it was a way to terminate the calling process and return a non-zero integer value when
some error condition arose. The exit() function does much more than this. Its synopsis is

#include <stdlib.h>

void exit(int status);

Three actions take place when exit() is called:

1. The process's registered exit functions run;

2. the system gets a chance to clean up after the process; and

3. the process gets a chance to have a status value delivered to its parent.

By an exit function, we mean a function that is run when exit() is called.

Before continuing, you may wonder why we would want a special function to run when exit() is
called. Imagine that when your program terminates, it has to update a log �le. Suppose the function
that does this is named update_log(). Suppose also that the program is very large, that there are
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multiple points at which exit() is called, and that more than one programmer is maintaining this
program. If the exit() function did not provide a means of invoking user-de�ned exit routines, then
each time that anyone modi�ed the program to insert a new call to exit(), he or she would have
to remember to call update_log() �rst. However, by registering update_log() to run whenever
exit() is called, it makes the programmer's job easier, since she does not have to worry about
forgetting to include the call when the program is modi�ed.

When exit() is called, the following actions take place in the given order:

1. All functions registered to run with the atexit() or on_exit() functions are run (in the
reverse order in which they were registered with these routines).

2. All of the �le streams opened through the Standard I/O Library are �ushed and closed.

3. The kernel's _exit() function is called, passing the status argument to it.

Programmers can register a function to run when a process calls exit() using either atexit() or
on_exit(). The preferred choice is atexit() since it is more portable. The man pages for both
contain the details for how to register such exit functions. If more than one function is registered,
they are run in the reverse order of the order in which they were registered (i.e., in last-in-�rst-out
order). After the registered functions run, the exit() function �ushes the streams and closes the
�les. The exit() function then calls _exit(status). The kernel's _exit() function makes sure
that

1. any open �le descriptors are closed (not just those opened through Standard I/O Library
functions),

2. all memory belonging to the process is released,

3. all children of the process (including zombies, de�ned below) are "adopted" by the init()

process (meaning that init() is made the parent of these children,

4. the low-order eight bits of the integer argument to exit(), called its exit status, are made
available to the parent process, and

5. under appropriate conditions, a SIGCHLD signal is sent to the parent process.

Actions (4) and (5) will be explained shortly. There are other actions that must take place within
the clean-up routines of the kernel. This is just a partial list, including the most basic operations.

The following example shows how atexit() can be used to register a few exit functions:

Listing 7.10: atexitdemo.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>

void Worker ( void )
{

p r i n t f ("Worker #1 : Fin i shed f o r the day . \ n " ) ;
}
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void Foreman ( void )
{

p r i n t f ("Foreman : Workers can stop f o r the day . \ n " ) ;
}

void Boss ( void )
{

p r i n t f (" F i r s t Boss : Foreman , t e l l a l l workers to stop work . \ n " ) ;
}

i n t main ( void )
{

long max_exit_functions = syscon f (_SC_ATEXIT_MAX) ;

p r i n t f ("Maximum number o f e x i t f unc t i on s i s %ld \n" ,
max_exit_functions ) ;

i f ( ( a t e x i t (Worker ) ) != 0) {
f p r i n t f ( s tde r r , " cannot s e t e x i t f unc t i on \n " ) ;
r e turn EXIT_FAILURE;

}

i f ( ( a t e x i t (Foreman ) ) != 0) {
f p r i n t f ( s tde r r , " cannot s e t e x i t f unc t i on \n " ) ;
r e turn EXIT_FAILURE;

}

i f ( ( a t e x i t ( Boss ) ) != 0) {
f p r i n t f ( s tde r r , " cannot s e t e x i t f unc t i on \n " ) ;
r e turn EXIT_FAILURE;

}
return EXIT_SUCCESS;

}

7.9.2 Waiting for Children to Terminate

After a process forks a child, how will it know if and when the child has �nished whatever task it
set out to accomplish? Typically, a process has to wait until the child or children �nish completing
their tasks before it can continue. The fork(), exec(), and exit() system calls need one more
partner to form a complete ensemble, and that is the wait() family of calls. Generally speaking,
the purpose of wait() is two-fold:

• to delay the parent until a child has terminated, and

• to obtain the status of a child that has terminated.

There are only two ways for a process to terminate: either "normally" by calling one of various
exit functions6 such as exit(), or "abnormally" and involuntarily as a result of receiving a signal
that killed it, or calling abort(). (When a program either reaches the end of its code or executes
a return, this results in an implicit call to exit().) In either case, the parent can call wait()

6There are two other exit functions, including _exit() and _Exit().
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Figure 7.5: Two-byte exit status.

to determine the cause of termination. There are three di�erent POSIX-compliant wait() system
calls:

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

The wait() function causes the executing process to suspend its execution until any one of its
children terminates. When a child terminates, the kernel sends a SIGCHLD signal to its parent,
unless the parent has indicated that it does not want these signals. Upon receipt of a SIGCHLD

signal, the parent resumes in the wait() code. The return value of wait() is the process-id of the
child that just terminated or was just killed. It does not matter which child terminates. The process
is resumed if any child terminates. If a process calls wait() but it has no children, wait() returns
immediately with a -1.

The purpose of the status parameter is to receive information about how the child terminated. It
is a pointer to a two-byte integer. If the child terminated normally using the exit() call, then the
high-order byte of the value received by wait() contains the low-order byte of the integer passed in
the exit() call's argument, and the low-order byte of the received value is 07. If the child terminated
abnormally because of an unhandled signal, then the low-order byte of the received value contains
the signal value. If the child was terminated by a signal, then in particular bit 7 is set if there was
a core dump8. Figure 7.5 shows how the two bytes of the status are arranged.

Based on these facts, the following code can be used for querying and extracting the status and
signal state:

if ((status & 0x000000FF) ==0)

/* low-order byte is zero, so high-order byte has status */

exitStatus = status >�> 8; /* exitStatus contains exit status */

else {

signum = status%128; /* signum contains signal */

if ( status & 0x00000080 )

7The convention when using exit() is to supply a zero on success and some non-zero value on failure.
8The fact that a core dump is supposed to occur does not mean that there will be a core �le in your working

directory. If your shell has been con�gured so that core dumps are disabled, then you will not see the �le. On

some systems, you can enable the core dump by running the command �ulimit -c unlimited�, which allows your

processes to create core �les of unlimited size. The ulimit command is part of bash and you can read the bash man

page for more details.
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/* core dump took place */

}

However, using the following macros, which are de�ned in <sys/wait.h>, makes the code more
portable:

if (WIFEXITED(status))

/* true implies exit() was called to terminate the child */

exit_status = WEXITSTATUS(status); /* extract exit status */

else if ( WIFSIGNALED(status) ) {

/* true if signal killed child */

signum = WTERMSIG(status); /* extract signal that killed child */

#ifdef WCOREDUMP

if ( WCOREDUMP(status) )

/* true if a core dump took place */

#endif

}

• The WIFEXITED(status) macro returns true if the child terminated normally, i.e., by calling
exit(3) or _exit(2), or by returning from main(). In this case the WEXITSTATUS(status)

macro returns the exit status of the child. This macro should only be employed if WIFEXITED()
returned true.

• The WIFSIGNALED(status) macro returns true if the child process was terminated by a sig-
nal. If it returns true, then the WTERMSIG(status) macro returns the number of the signal
that caused the child process to terminate. The WTERMSIG() macro should only be used if
WIFSIGNALED() returned true.

• The WCOREDUMP(status) macro returns true if the child produced a core dump. This macro
should only be used if WIFSIGNALED returned true. This macro is not speci�ed in POSIX.1-

2001 ; only use this enclosed in

#ifdef WCOREDUMP ... #endif.

7.9.3 Using wait()

Listing 7.11 contains an example that puts together the use of fork(), exit(), and wait(). It is
the typical way in which these three primitives are used. In this example the user is prompted to
supply an exit value for the child, which is then passed to the exit() call, to show that the value
is then available to the parent in the wait() call.

Listing 7.11: waitdemo2.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>
#inc lude <s i g n a l . h>
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void ch i l d ( )
{

i n t exit_code ;
p r i n t f (" I am the ch i l d and my proce s s id i s %d . \ n" , ge tp id ( ) ) ;
s l e e p ( 2 ) ;
p r i n t f (" Enter a value f o r the ch i l d e x i t code : " ) ;
s can f ("%d",&exit_code ) ;
e x i t ( exit_code ) ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t pid ;
i n t s t a tu s ;

p r i n t f (" S ta r t i ng up . . . \ n " ) ;
i f ( −1 == ( pid = fo rk ( ) ) ) {

pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid )

ch i l d ( ) ;
e l s e { /∗ parent code ∗/

p r i n t f ("My ch i l d has pid %d and my pid i s %d . \ n" , pid , ge tp id ( ) ) ;
i f ( ( pid = wait(& s ta tu s ) ) == −1) {

pe r ro r (" wait f a i l e d " ) ;
e x i t ( 2 ) ;

}
i f (WIFEXITED( s ta tu s ) ) { /∗ low order byte o f s t a tu s equa l s 0 ∗/

p r i n t f (" Parent : Child %d ex i t ed with s t a tu s %d . \ n" ,
pid , WEXITSTATUS( s t a tu s ) ) ;

}
e l s e i f ( WIFSIGNALED( s t a tu s ) ) {

p r i n t f (" Parent : Child %d ex i t ed with e r r o r code %d .\ n" ,
pid , WTERMSIG( s t a tu s ) ) ;

#i f d e f WCOREDUMP
i f ( WCOREDUMP( s ta tu s ) )

p r i n t f (" Parent : A core dump took p lace . \ n " ) ;
#end i f

}
}
re turn 0 ;

}

Notes.

• When the child process displays a message such as

I am the child and my process id is 5666.

Enter a value for the child exit code:

enter an exit code and observe that it is printed by the parent after the parent's call to wait()

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
37

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 7 Process Architecture and Control

Prof. Stewart Weiss

�nishes. Then run the program again but this time send a signal to the child process from
another terminal using the kill command, i.e.,

$ kill -10 5666

and observe that the parent displays the message

Parent: Child 5666 exited with error code 6.

Parent: A core dump took place.

• The conditional compilation macro is used because the WCOREDUMP macro is not available on
all UNIX systems, as noted above.

Sometimes a parent does not care very much about how its children terminate. A parent can
explicitly tell the kernel that it doesn't care if and when its children terminate by setting the
SA_NOCLDWAIT �ag, which prevents the delivery of SIGCHLD signals to itself. It does this using the
sigaction() call:

const struct sigaction act;

act.sa_flags = SA_NOCLDWAIT;

sigaction (SIGCHLD, &act, NULL);

Notice that it is not necessary to set a signal handler in this call; it is enough to just pass the
sa_flags �eld. If a process has so indicated to the kernel its lack of interest in its children, then
when a child terminates, the child's status will not be delivered to its parent. The child will be
completely terminated immediately. Similarly, when the parent sets the action for SIGCHLD to
SIG_IGN, the status will be discarded and the child completely terminated.

If the parent process has set neither SA_NOCLDWAIT nor the action for SIGCHLD to SIG_IGN and is
presently executing any of the wait() calls described below, then the status will be delivered to the
parent and a SIGCHLD signal sent to it. If the parent is not currently waiting, then when the parent
does invoke wait(), it will receive the status. If the parent is not executing any form of wait(),
though, the child process is transformed into a zombie process. A zombie process is an inactive
process and it will be deleted at some later time when its parent process executes a wait() call.
Zombie processes exist simply to provide their parents with their status values at a future time.

The �ip side of this issue is what happens when a process terminates before its children. When a
process terminates and has children, these children are not terminated also. In comes the init()

process. The init() process adopts orphans, so if a process terminates and has any children, they
are adopted by init(). When the children terminate, their exit status will be sent to init().

7.9.4 Using waitpid()

The waitpid() function has three parameters. The �rst is the process-id of the child to wait for,
the second is a pointer to the variable in which to store the status, and the last is an optional
set of �ags. If the pid is -1, then it tells the kernel that the process will wait for any child, like
wait(). Setting the pid to 0 means to wait for only those children in the same process group as
the parent. Setting the pid to -G, for some positive integer G, means to wait for any child whose
process group-id is G.

This work is copyrighted by Stewart Weiss and licensed under the Creative Commons Attribution-

ShareAlike 4.0 International License.
38

http://creativecommons.org/licenses/by-sa/4.0/ 
http://creativecommons.org/licenses/by-sa/4.0/ 


UNIX Lecture Notes

Chapter 7 Process Architecture and Control

Prof. Stewart Weiss

There are three �ags that can be passed to waitpid():

WNOHANG return immediately if no child has exited.
WUNTRACED also return if a child has stopped (but not traced via ptrace(2)).

Status for traced children which have stopped is provided even if
this option is not speci�ed.

WCONTINUED (Since Linux 2.6.10) also return if a stopped child has been resumed
by delivery of SIGCONT.

The program in Listing 7.12 below combines some of the preceding ideas and demonstrates the use
of waitpid() with the WNOHANG �ag.

Listing 7.12: waitpiddemo.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>
#inc lude <s i g n a l . h>

void ch i l d ( )
{

i n t exit_code ;

p r i n t f (" I am the ch i l d and my proce s s id i s %d . \ n" , ge tp id ( ) ) ;
s l e e p ( 2 ) ;
p r i n t f (" Enter a value f o r the ch i l d e x i t code f o l l owed by <ENTER>.\n " ) ;
s can f ("%d",&exit_code ) ;
e x i t ( exit_code ) ;

}

i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid ;
i n t s t a tu s ;
i n t signum ;

p r i n t f (" S ta r t i ng up . . . \ n " ) ;
i f ( −1 == ( pid = fo rk ( ) ) ) {

pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid ) {

ch i l d ( ) ;
}
e l s e {

/∗ wait f o r s p e c i f i c c h i l d p roce s s with waitp id ( )
I f no ch i l d has terminated , do not block in waitp id ( )
Ins tead j u s t s l e e p . (Would do something u s e f u l i n s t ead . )

∗/
whi l e (0 == waitp id ( pid , &status , WNOHANG) ) {

p r i n t f (" s t i l l wa i t ing f o r c h i l d \n " ) ;
s l e e p ( 1 ) ;

}
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/∗ pid i s the pid o f the ch i l d that terminated ∗/
i f (WIFEXITED( s ta tu s ) ) {

p r i n t f (" Exit s t a tu s o f c h i l d %d was %d .\ n" ,
pid , WEXITSTATUS( s t a tu s ) ) ;

}
e l s e i f ( WIFSIGNALED( s t a tu s ) ) {

signum = WTERMSIG( s t a tu s ) ;
p r i n t f (" Parent : Child %d ex i t ed by s i g n a l %d . \ n" , pid ,

signum ) ;
#i f d e f WCOREDUMP

i f ( WCOREDUMP( s ta tu s ) )
p r i n t f (" Parent : A core dump took p lace . \ n " ) ;

#end i f
}

}
re turn 0 ;

}

Notes.

• The parent is in a busy waiting loop in this example, waiting for the child to terminate. The
WNOHANG �ag to waitpid() allows it to continue polling the waitpid() call and do something
else in the meanwhile. The body of the loop would be replaced with a task that the parent
could do while waiting for the child. The advantage of this is that the parent does not have
to block, waiting for the child, but can instead do work. If there is no work to do, then this
paradigm is not the one to use.

• You can send a signal to the child in the same way as for the program in Listing 7.11 to
observe that the parent code detects the error return.

7.9.5 Non-blocking waits

Instead of calling wait() or waitpid(), a process can establish a SIGCHLD handler that will run
when a child terminates. The SIGCHLD handler can then call wait(). This frees the process from
having to poll the wait() function. It only calls wait() when it is guaranteed to succeed. The
following example (rabbits2.c in the demos directory) demonstrates how this works.

Listing 7.13: rabbits2.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <s i g n a l . h>
#inc lude <l im i t s . h>
#inc lude <sys /wait . h>
#inc lude <termios . h>

#de f i n e NUM_CHILDREN 5
#de f i n e SLEEPTIME 30

/∗∗ ch i l d ( ) The code that i s executed by each ch i l d p roce s s
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∗ Al l t h i s does i s r e g i s t e r the SIGINT s i g n a l handler and then
∗ s l e e p SLEEPTIME seconds . I f a c h i l d i s d e l i v e r e d a SIGINT , i t
∗ e x i t s with the e x i t code 99 . See on_sig int ( ) below .
∗/
void ch i l d ( ) ;

/∗∗ on_sig int ( ) S i gna l handler f o r SIGINT
∗ Al l i t does i t c a l l e x i t with a code o f 99 .
∗/
void on_sig int ( i n t s i gno ) ;

/∗∗ on_sigchld ( ) S i gna l handler f o r SIGCHLD
∗ This c a l l s wait ( ) to r e t r i e v e the s t a tu s o f the terminated ch i l d
∗ and get i t s pid . These are both s to r ed in to g l oba l v a r i a b l e s that
∗ the parent can ac c e s s in the main program . I t a l s o s e t s a g l oba l
∗ f l a g .
∗/
void on_sigchld ( i n t signum ) ;

/∗ These v a r i a b l e s are dec l a r ed with the v o l a t i l e q u a l i f i e r to t e l l the
compi le r that they are used in a s i g n a l handler and t h e i r va lue s
change asynchronous ly . This prevents the compi le r from performing an
opt imiza t i on that might corrupt the program s t a t e . Al l th ree are
shared by the main parent p roce s s and the SIGCHLD handler .

∗/
v o l a t i l e i n t s t a tu s ;
v o l a t i l e pid_t pid ;
v o l a t i l e sig_atomic_t chi ld_terminated ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Main Program

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t count = 0 ;
const i n t NumChildren = NUM_CHILDREN;
i n t i ;
s t r u c t s i g a c t i o n newhandler ; /∗ f o r i n s t a l l i n g hand le r s ∗/

p r i n t f ("About to c r e a t e many l i t t l e r abb i t s . . . \ n " ) ;
f o r ( i = 0 ; i < NumChildren ; i++) {

i f ( −1 == ( pid = fo rk ( ) ) ) {
pe r ro r (" f o rk " ) ;
e x i t (−1);

}
e l s e i f ( 0 == pid ) { /∗ ch i l d code ∗/

/∗ Close standard output so that ch i l d r en do not p r i n t
parent ' s output again . ∗/

c l o s e ( 1 ) ;
c h i l d ( ) ;
e x i t ( 1 ) ;

}
e l s e { /∗ parent code ∗/
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i f ( 0 == i )
p r i n t f (" Another " ) ;

e l s e i f ( i < NumChildren−1 )
p r i n t f (" and another " ) ;

e l s e
p r i n t f (" and another . \ n " ) ;

}
}
/∗ parent cont inues here ∗/
/∗ Set up s i g n a l handl ing ∗/
newhandler . sa_handler = on_sigchld ;
s igemptyset (&newhandler . sa_mask ) ;
i f ( s i g a c t i o n (SIGCHLD, &newhandler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
r e turn ( 1 ) ;

}

/∗ Enter a loop in which work could happen whi le the g l oba l f l a g
i s checked to see i f any ch i l d has terminated . ∗/

chi ld_terminated = 0 ; /∗ Set f l a g to 0 ∗/
whi l e ( count < NumChildren ){

i f ( chi ld_terminated ) {
i f ( WIFEXITED( s t a tu s ) )

p r i n t f (" Rabbit %d died with code %d .\ n" ,
pid , WEXITSTATUS( s t a tu s ) ) ;

e l s e i f ( WIFSIGNALED( s t a tu s ) )
p r i n t f (" Rabbit %d was k i l l e d by s i g n a l %d . \ n" ,

pid , WTERMSIG( s t a tu s ) ) ;
e l s e

p r i n t f (" Rabbit %d d i e s with s t a tu s %d . \ n" , pid , s t a tu s ) ;
ch i ld_terminated = 0 ;
count++;

}
e l s e {

/∗ do something u s e f u l here . f o r now j u s t de lay a b i t ∗/
s l e e p ( 1 ) ;

}
}

p r i n t f (" Al l r abb i t s have terminated and been l a i d to r e s t . \ n " ) ;
r e turn 0 ; /∗ main r e tu rn s ; c h i l d never reaches here ∗/

}

void on_sig int ( i n t s i gno )
{

e x i t ( 9 9 ) ;
}

void ch i l d ( )
{

s t r u c t s i g a c t i o n newhandler ;

newhandler . sa_handler = on_sig int ;
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s igemptyset (&newhandler . sa_mask ) ;
i f ( s i g a c t i o n (SIGINT , &newhandler , NULL) == −1 ) {

pe r ro r (" s i g a c t i o n " ) ;
e x i t ( 1 ) ;

}
s l e e p (SLEEPTIME) ;

}

void on_sigchld ( i n t signum )
{

i n t ch i ld_sta tus ;

i f ( ( pid = wait(&ch i ld_sta tus ) ) == −1) {
pe r ro r (" wait f a i l e d " ) ;

}
chi ld_terminated = 1 ;
s t a tu s = ch i ld_sta tus ;

}

Notes.

• The C Standard I/O Library by default uses bu�ered streams. This means that when a
process uses the C output functions such as printf(), the output is placed into a bu�er
before being delivered to the terminal device. When each child is created, it is given a copy of
the parent's bu�ers at the time of creation. If we did not close the �le descriptor in the child
immediately, then when the child terminated, its bu�er would be �ushed and multiple copies
of the parent's output would appear in the terminal window. We cannot use fclose(stdout)
because fclose() is designed to �ush the bu�ers and would also cause the output to appear.
We must use the lower-level �le descriptors. Try commenting out the line �close(1)� and
running the program.

• The child is designed to catch a SIGINT and exit within the signal handler. The reason for
this is to allow the user to send a SIGINT ( by issuing a kill -2 to the child on the command
line) in order to show that even if a signal caused the signal handler to run, the fact that the
child called exit() means that the parent will see that the child died by calling exit(), not
as a result of being sent a signal.

• If the child is not killed by a signal, then it terminates normally after a 30 second sleep.

• The on_sigchld() handler, after calling wait(), sets an atomic �ag and lets the main program
do the work of handling the child's exit.

• The program does not test the return value of fork() for failure, just to save space here.

• Although POSIX does not permit it, some systems allow signals to be lost, and it is possible
to lose a SIGCHLD signal in this code. If multiple children terminate in a small time sequence,
and the parent is in the SIGCHLD handler, then some of the SIGCHLD signals may be merged
into a single signal. GNU C allows this for example. The �x requires much more complex code
that maintains a list of the child processes and which inspects that list within the handler.
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7.9.6 Waiting for State Changes in Children

The wait() family was extended in Linux 2.6.9 with the inclusion of waitid(), which can be used
to gather information about other changes in the state of child processes besides their termination:

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

The idtype can be one of P_PID, P_PGID, or P_ALL. If it is P_PID, it waits for the process whose
process-id is passed as the second argument. If it is P_PGID, it waits for any process whose group-id
is the second argument. If P_ALL, the second argument is ignored and it acts like the ordinary
wait().

The options parameter is the OR of one or more of the �ags

WEXITED Wait for children that have terminated.
WSTOPPED Wait for children that have been stopped by delivery of a signal.
WCONTINUED Wait for (previously stopped) children that have been resumed by

delivery of SIGCONT.

and optionally the WNOHANG �ag described earlier as well as the WNOWAIT �ag, which leaves the child
process as if the parent never called wait(), in case it wants to retrieve the status at a later time.

If waitid() completes successfully, it �lls in the siginfo_t structure pointed to by the infop pa-
rameter . The siginfo_t structure is the same structure used by the sigaction() function. It is
a union, so the members �lled in by sigaction() are not exactly the same as those �lled in by
waitid(). waitid() provides the following members:

si_pid The process-id of the child

si_uid The real user-id of the child

si_signo SIGCHLD

si_status Either the exit status or the signal that caused the child's state to change.

si_code Exactly one of CLD_EXITED if the child exited, CLD_KILLED if the child was killed by a
signal, CLD_STOPPED if the child was stopped by a signal, or CLD_CONTINUED if it was
continued by a SIGCONT.

The way to use waitid() is to inspect the value of infop->si_code to determine the state of the
child before accessing infop-status. The following listing, modi�ed from the one in the man page
for wait(), demonstrates how to use waitid().

Listing 7.14: waitiddemo.c

#inc lude <s td i o . h>
#inc lude <uni s td . h>
#inc lude <s t d l i b . h>
#inc lude <sys /wait . h>
#inc lude <s i g n a l . h>

#de f i n e SLEEPTIME 60
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i n t main ( i n t argc , char ∗ argv [ ] )
{

pid_t pid ;
s i g i n f o_t s i g i n f o ;

i f ( −1 == ( pid = fo rk ( ) ) ) {
pe r ro r (" f o rk " ) ;
e x i t ( 1 ) ;

}
e l s e i f ( 0 == pid ) {

p r i n t f (" Child pid i s %d\n" , getp id ( ) ) ;
s l e e p (SLEEPTIME) ;
e x i t ( 0 ) ;

}
/∗ Parent code ∗/
e l s e do {

/∗ Zero out s i_pid in case the s ig_info_t s t r u c t does not get ∗/
/∗ i n i t i a l i z e d because no ch i l d r en are wa i tab l e . ∗/
s i g i n f o . s i_pid = 0 ;

/∗ Wait f o r changes in the s t a t e o f the ch i l d c rea ted above , ∗/
/∗ s p e c i f i c a l l y , stopping , resuming , ex i t i ng , and return ∗/
/∗ immediately i f no ch i l d i s wa i tab l e . ∗/
i f (−1 == wai t id (P_PID, pid , &s i g i n f o ,

WEXITED | WSTOPPED | WCONTINUED | WNOHANG) ) {
pe r ro r (" wa i t id " ) ;
e x i t (EXIT_FAILURE) ;

}
i f ( s i g i n f o . s i_pid == 0 )

/∗ no ch i l d i s wa i tab l e . ∗/
cont inue ;

switch ( s i g i n f o . s i_code ) {
case CLD_EXITED:
p r i n t f (" Child ex i t ed with s t a tu s %d\n" ,

s i g i n f o . s i_s ta tu s ) ;
break ;
case CLD_KILLED:

case CLD_DUMPED:
p r i n t f (" Child k i l l e d by s i g n a l %d\n" ,

s i g i n f o . s i_s ta tu s ) ;
break ;
case CLD_STOPPED:
p r i n t f (" Child stopped by s i g n a l %d\n" ,

s i g i n f o . s i_s ta tu s ) ;
break ;
case CLD_CONTINUED:
p r i n t f (" Child cont inued \n " ) ;
break ;

}
} whi l e ( s i g i n f o . s i_code != CLD_EXITED &&

s i g i n f o . s i_code != CLD_KILLED &&
s i g i n f o . s i_code != CLD_DUMPED ) ;

re turn 0 ;
}
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Notes.

• The si_status �eld does not need to be bit-manipulated to extract its value. The value
contained there has already been shifted as necessary.

• The while-loop in the parent continues until the child is killed or terminated to give you a a
chance to stop and continue the child.

• If you run this program in one terminal, and then from another issue kill commands, or run
it in the background on one terminal and issue kill commands on the same terminal, you will
see output like the following:

$ waitiddemo 77

Child pid is 15243

Child exited with status 77

$

Then do it again without the command-line argument:

$ waitiddemo &

Child pid is 15245

$ kill -STOP 15245

Child stopped by signal 19

$ kill -CONT 15245

Child continued

$ kill -TERM 15245

Child killed by signal 15

[1]+ Done waitid2

$

7.10 Summary

The four principal tools in process creation and control are fork(), exec(), exit(), and wait()

and their related functions. Add to the toolbox the things you have learned about signals and
signal handling and you have the means of creating and managing processes e�ectively. What is
still lacking is a means for these processes to exchange and share data e�ectively. At this point
the only way they can share data other than provided by the signal mechanism is through the �le
system, which is extremely slow. Inter-process communication is the topic of the next chapter.

Because the new process is a copy of the parent process, it shares all open �les and all library bu�ers.
When the two processes both use the C I/O Library, care must be taken to prevent unexpected
consequences of this.

Process creation is a time-consuming activity in the kernel, with high overhead in memory copying.
When the objective is to use shared variables and common code, light-weight processes, or threads,
are the better solution. This topic follows as well.
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