
Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Arrays

Motivation

Suppose that we want a program that can read in a list of numbers and sort that list, or �nd the largest
value in that list. To be concrete about it, suppose we have 15 numbers to read in from a �le and sort into
ascending order. We could declare 15 variables to store the numbers, but then how could we use a loop to
compare the variables to each other? The answer is that we cannot.

The problem is that we would like to have variables with subscripts or something like them, so that we could
write something like

max = 0;

for (i = 0; i < 15 ; i++) {

if (number_i > max)

max = number_i ;

}

where somehow the variable referred to by number_i would change as i changed.

You have seen something like this already with C++ strings: if we declare

string str;

then we can write a loop like

for (int i = 0; i < str.size(); i++)

cout <�< str[i] <�< �-� ;

in which each individual character in str is accessed using the subscript operator []. The characters in
a string form what we call an array . An array is conceptually a linear collection of elements, indexed by
subscripts, all of the same type. If we could create an array named number with 15 elements, it would look
like this:

number:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Each element could be accessed using the subscript operator, as in number[1] or number[7], and we could
write a loop like

max = 0;

for (i = 0; i < 15 ; i++) {

if (number_i > max)

max = number[i] ;

}

This would make it possible to manipulate large collections of homogeneous data, meaning data of the
same type, with a single subscripted variable. Such is possible in C and C++ and all modern programming
languages. Arrays are of fundamental importance to algorithms and computer science.

1

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Declaring a (one-Dimensional) Array

Syntax:

elementtype arrayname [size_expression]

where

• elementtype is any type that already exists

• arrayname is the name of the array

• size_expression is the number of elements in the array

This declares an array named arrayname whose elements will be of type elementtype , and that has
size_expression many elements.

Examples

char fname[24]; // an array named fname with 24 chars

int grade[35]; // an array named grade with 35 ints

int pixel[1024*768]; // an array named pixel with 1024*768 ints

const int MAX_STUDENTS = 100;

double average[MAX_STUDENTS]; // an array named average with 100 doubles

string fruit[5]; // an array of 5 C++ strings

The element type of an array is often called its base type . The �rst example is an array with base type
char, for example. One can say that fname is �an array of char.�

Things to remember about arrays:

• The starting index of an array is 0, not 1.

• The last index is one less than the size of the array.

• If the array has size elements, the range is 0..size-1.

• Arrays contain data of a single type.

• An array is a sequence of consecutive elements in memory and the start of the array is the address of
its �rst element.

• Because the starting address of the array in memory is the address of its �rst element, and all elements
are the same size and type, the compiler can calculate the locations of the remaining elements. If B is
the starting address of the array array, and each element is 4 bytes long, the elements are at addresses
B, B + 4, B + 8, B + 12, and so on, and in general, element array[k] is at address B + 12k.

• Although C and C++ allow the size expression to be variable, you should not use a variable, for reasons
having to do with concepts of dynamic allocation and the lifetime of variables.

• Use constants such as macro de�nitions or const ints as the sizes of arrays.

2

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Initializing Declarations

Arrays can be initialized at declaration time in two di�erent ways.

elementtype arrayname[size expr] = { list with <= sizeexpr vals };

elementtype arrayname[] = { list with any number of values };

Examples

#define MAXSCORES 200

#define NUMFRUIT 5

const int SIZE = 100;

double numbers[SIZE]; // not initialized

string fruit[NUMFRUIT] = {"apple","pear","peach","lemon","mango"};

int power[] = {0,1,2,4,9,16,25,36,49,64,81,100};

int counts[SIZE] = {0};

int score[MAXSCORES] = {1,1,1};

The �rst declaration declares but does not initialize the array named numbers. The next declares and
initializes an array named fruit with �ve strings:

apple pear peach lemon mango

0 1 2 3 4

The third initializes an array named power, whose size is determined by the number of values in the brace-
delimited list. When the array size is given in square brackets but the number of values in the list is less
than the size, the remainder of the array is initialized to 0. In the fourth example, all elements will be set
to 0, and in the last, the �rst three are set to 1 and the rest, to 0.

Rules

• If the array size is given in brackets, then the initialized list must have at most that many values in it.
If it has fewer, the rest of the array is initialized to 0's.

• If the size is not given in brackets, then the size is equal to the number of elements in the initializer
list.

• If there is no initializer list, none of the array elements are initialized. They are not set to 0.

Advice

• Always named constants for the sizes of arrays. It makes it easier to write, maintain, and read the
code.

Accessing Array Elements

An element of an array is accessed by using the subscript operator . The syntax is:

arrayname [integer-valued-expression-within-range]

3

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Examples

cout <�< fruit[0] ; // prints apple

cout <�< powers[1] <�< � � <�< powers[2] ; // prints 1 2

fruit[3] = �apricot�; // replaces �peach� by �apricot in fruit[3]

counts[SIZE-10] = counts[SIZE-11] + 2; // sets counts[90] to counts[89] + 2 = 2

cout <�< score[power[4]]; // power[4] = 9, so this outputs scores[9]

Notice in the last two examples that the index expression can be arbitrary integer-valued expressions, even
the value of an array of integers.

Loops and Arrays

Without loops it is very hard to use arrays. Conversely, with them they are easy to use. In general, a loop
can be used to initialize an array, to modify all elements, to access all elements, or to search for elements
within the array. An example follows.

Example 1. Finding a minimum element.

This example shows how an array can be initialized with values from an input stream using a for-loop. The
for-loop guarantees that the array is not �over�lled� because it runs only as many times as the array has
elements. The example uses the preceding declarations.

// read va lues in to array from standard input
f o r (i = 0 ; i < MAXSCORES; i++)

c in >> sco r e [i] ;

// Let minscore be the f i r s t element as a s t a r t i n g guess
i n t minscore = sco r e [0] ;

// Compare remaining array alements to cur rent maxscore
f o r (i = 1 ; i < MAXSCORES; i++) {

i f (minscore > sco r e [i]) // i f cur r ent element < minscore
minscore = sco r e [i] ; // make i t new minscore

// At t h i s point , maxscore >= sco r e [j] , f o r a l l j = 0 , 1 , 2 , . . . i
}

cout << The minimum sco r e i s << minscore << endl ;

In this example, the score array is �lled from values entered on the standard input stream, cin. After the
entire array has been �lled, a variable named minscore is set to the value of score[0]. Then a second
loop examines each element of score from score[1], to score[2], and so on up to score[MAXSCORE-1]. If
an element is smaller than minscore, its value is copied into minscore. This implies that in each iteration
of the second loop, minscore is the smallest of the elements seen so far. This is how one searches for the
minimum value in an unsorted array.

Danger

If your program tries to access an element outside of the range of the array, bad things can happen. Typically
the program will be aborted by the opeating system with an error message. As an example:

int score[10];

for (int i = 0; i < 20; i++)

cin >�> score[i];

4

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

When i eventually has the value 10, score[i] is a memory address outside of the score array (since it is
0-based and the last index is 9) and the program will be aborted.

Partially Filled Arrays

Although an array might be declared to have so many elements, that does not always mean that all of the
cells in the array actually have meangingful data. Sometimes a program does not know how much data it
will read in from a �le or external source, so it declares an array much larger than it needs. Then after it
reads the data, only part of the array has been �lled. If a loop that is processing the array tries to process
all array elements, errors will result.

This implies that when an array is �lled and the number of data items is not known in advance, then the
code needs to count how many values are written into the array, and stop if it exceeds the array size, or if
it runs out of data �rst. The while loop has two conditions to check in this case:

i n t l i s t [1 0 0] ;
i n t temp ;
l ength = 0 ;

c in >> temp ; // try to read to f o r c e eo f () to become true i f the f i l e i s empty
whi l e (l ength < 100 && ! c in . e o f ()) {

l i s t [l ength] = temp ; // temp has a value , so copy i t i n to the l i s t
l ength++; // increment because we copied a value in to l i s t
c in >> temp ; // read a new value ; might make eo f () t rue

}

The variable length keeps a count of what has been put into the array and when the loop ends, it is
guaranteed to be at most 100. Either the loop ends because length became 100 or because the data stream
ended. In either case, the array has been �lled with length many values. Therefore, all future processing
of this array must iterate only from 0 to length -1. The following code would �nd the minimum element of
list:

f o r (i = 1 ; i < length ; i++) {
i f (min > l i s t [i])

min = l i s t [i] ;
}

Arrays in Functions

Suppose that you want to write a function that can �nd the minimum element of any array it is given. Can
we write such a function? Let us rephrase a simpler question for now. Can we write a function that can �nd
the minimum integer in an array of integers? We can safely answer yes to this question, whether it is C or
C++. The heart of the matter is how we can pass an entire array into a function.

How can you pass an entire array into a function?

An array parameter in a function is written as a name followed by empty square brackets:

result_type function_name (..., elementtype arrayname [] ,...) ;

For example,

int max(int array[]);

void foo(int a[], int b[], double c[]);

5

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

The size of the array is not put between the square brackets. When you declare a function with an array
parameter, you just put the type and a name for the parameter followed by a pair of empty square brackets.
This tells the compiler that the corresponding argument will be an array of that type.

How does the function know how many elements are in the array?

It doesn't. Arrays do not �know� their size. It is not stored anywhere. The function acts on any array of
any size whose type matches the base type.

So how can you write a function that works with an array parameter?

You must always pass the size of the array as an extra parameter. For example, if we want to write a function
that �nds the minimum in an integer array, the function prototype would be

int min(int array[], int size);

We would call the function by passing just the array name to it. not the name with square brackets after it.
For example

int score[MAXSCORES];

for (i = 0; i < MAXSCORES; i++)

cin >�> score[i];

cout <�< �The minimum score is � <�< min(score, MAXSCORES);

Notice that the score array is passed to the min() function just by writing its name. The min() function
de�nition would be

i n t min (i n t array [] , i n t s i z e)
{

i n t minvalue = array [0] ;

// Compare remaining array alements to cur rent minvalue
f o r (i n t i = 1 ; i < s i z e ; i++) {

i f (minvalue > array [i])
minvalue = array [i] ;

// minvalue <= array [j] , f o r a l l j <= i
}
return minvalue ;

}

When the function is called as in cout <�< max(score, MAXSCORES), the score array is passed to the array
parameter array, and within the function array[i] is in fact a reference to score[i], not a copy of

it , but a reference to it, i.e., another name for it. This means that changes made to array[i] within the
function are actually made to score[i] outside of the function. The following example will make this clearer.

void i n i t Squa r e s (i n t array [] , i n t s i z e)
{

f o r (i n t i = 0 ; i < s i z e ; i++) {
array [i] = i ∗ i ;

}
}

6

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

The function initSquares() puts into each element array[i] the value i*i. The remarkable thing about
array parameters is that each element of the array parameter acts like a reference to the corresponding
element of its argument, so the output of this code snippet

int squares[20];

initSquares(squares, 20);

for (int i = 1; i < 20; i++)

cout <�< squares[i] <�< endl;

will be the squares 0, 1, 4, 9, ... 400, because the changes made to the array parameter array[] are actually
changes made to the calling program's squares array. To emphasize this

There are three types of parameter passing:

• call by value parameters

• call by reference parameters

• array parameters

Array parameters are like call by reference parameters � changes made to the array are changes

made to the corresponding array argument.

Searching and Sorting

Two of the most common types of processing of array data are searching for speci�c values and sorting the
elements.

Searching

The problem of searching for a particular value in an array or in a list of anything is called the search

problem . The value being sought is called the search key , or just the key when the meaning is clear.

Suppose, for example, that want to know whether anyone had a score of 75, assuming that we already read a
list of scores into our array scores. We can search through our array of scores for the number 75 as follows:

cout << "Enter the number to look f o r : " ;
c in >> searchkey ;

bool found = f a l s e ; // f l a g to con t r o l loop
i n t i = 0 ; // index to go through array

whi l e (! found && (i < length)) {
i f (searchkey == sco r e [i]) // found i t !

found = true ;
e l s e

i++; // didn ' t f i nd i t yet , so advance to next element
}

// I f found == f a l s e then we did not f i nd the item
i f (found)

cout << searchkey << " i s in index " << i << endl ;

There are some very important concepts here.

7

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

• We do not want to use a for-loop because if we �nd what we are looking for, we want to stop searching.
So we use a while-loop that is re-entered if we have not found what we are looking for and our index
variable is still within the range of the array. Therefore we set found to false initially and set it to
true if we �nd a matching value in the array.

• If we do �nd an element in the array whose value equals searchkey, then we set found to true. This
causes the loop to be exited. Because i is declared outside of the loop body, it still has a valid value
after the loop exits. It was not incremented since found became true, so it is the index at which
score[i] == searchkey.

• If we search through the entire array and do not �nd searchkey, then found is false when the loop
exits, because the condition (i < length) became false. By checking the value of found after the
loop, we can tell whether it was found or not.

This is the �rst example of a non-trivial algorithm. We can state its requirement more generally as,

�Given an array A of N values, and a searchkey X, �nd the position in A in which X occurs
or report that it is not there.�

The preceding solution searched through the array one element at a time, starting with the �rst and ending
with the last, until either it found it or it examined every element.

This is the best we can do when searching through a list of values that is not in sorted order. We have to
look at every value in the array until we �nd the key. If there are N items in the array, we need to check
compare our search key to N values in the absolute worst case that either it is not there or it is in the last
position.

If however, the array is sorted, then it is possible to search in a much faster way. In general it is better to
sort the values in the array for faster searching later. Presumably we will search the data very often, so if
sorting it costs us a bit of time, it is worth the savings we get from faster searching later.

Sorting

There are many di�erent ways to sort an array, some much faster than others. Some are easy to understand
and some are harder to understand. Some require additional memory to sort, others can be done �in place�,
meaning by rearranging the elements of the array without using extra memory. The sorting problem can be
stated as follows,

�Given an array A of size N, rearrange the elements of A so that A[0] <= A[1] <= A[2] <=
... <= A[N-1].�

Notice that the elements are rearranged. In other words, sorting is a permutation, a rearranegment of an
array.

We will start with a very intuitive sorting algorithm that is called selection sort. You will see why it is called
selection sort very soon. The idea is simple:

Find the minimum element of the array from 0 to N-1. Suppose it is in index K.

Swap A[0] and A[K]. Now A[0] has the smallest element.

Find the minimum element of the array from 1 to N-1. Suppose it is in index K.

Swap A[1] and A[K]. Now A[1] has the second smallest element.

Find the minimum element of the array from 2 to N-1. Suppose it is in index K.

Swap A[2] and A[K]. Now A[2] has the third smallest element.

Repeat this procedure until there are two elements remaining: A[N-2] and A[N-1}. Find the
smaller of the two and swap it into A[N-2].

8

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

When the above procedure has �nished, the array is in sorted order, smallest to largest. The procedure can
be stated more succinctly and abstractly as follows:

let bottom = 0, 1, 2, ... N-2 {

let k = index_of_minimum(A, bottom, N-1)

swap(A[k], A[bottom)

}

This pseudocode translates directly into the following C++ function. Because you can sort any types of
values that can be compared using ordinary comparison operators, rather than writing it with a �xed type,
we use the type T, and a typedef that can be changed easily that here makes T another name for the string
type.

typede f s t r i n g T;

// Returns the index o f the sma l l e s t element in A between
// A[bottom] and A[maxIndex]
i n t indexofMin (const T A[] , i n t bottom , i n t maxIndex) ;

// Swaps the va lue s s to r ed in x and y
void swap (T & x , T & y)

// Precond i t ion : A [0 . . N−1] conta in s data o f type T, to be so r t ed
// Postcond i t i on : A [0 . . N−1] i s s o r t ed in ascending order .
void s e l e c t i o n S o r t (T A[] , i n t N)
{

i n t sma l l e s t ; // index o f sma l l e s t item in unsorted part o f A
in t f i r s t ; // index o f f i r s t item in unsorted part o f A

f i r s t = 0 ; // s t a r t with l a s t at h i ghe s t index in A
whi le (f i r s t < N−1) {

sma l l e s t = indexofMin (A, f i r s t , N−1);
swap (A[sma l l e s t] , A[f i r s t]) ;
f i r s t ++;

}
}

i n t indexofMin (const T A[] , i n t bottom , i n t maxIndex)
{

i n t m = bottom ;
f o r (i n t k = bottom+1; k <= maxIndex ; k++)

i f (A[k] < A[m])
m = k ;

re turn m;
}

void swap (T & x , T & y) ;
{

T temp = x ;
x = y ;
y = temp ;

}

9

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Notes

• This algorithm can be written symmetrically using maximums instead of minimums. That is a good
exercise to try.

• If the call to swap() were replaced by the three instructions that do the swap, this would compile with
a C compiler.

• This always takes the exact same amount of time, even if the array is already sorted. The call to
indexofMin() always iterates its loop (N-first) times and the swap is always performed, even if the
two indices are the same. It will swap a value with itself in this case. It is an example of an unnatural

sort . A sorting algorithm is natural if arrays that are already in order require less swapping than
arrays that are very out of order.

Once an array has been sorted, searching it is much faster. Later we will see a method of searching called
binary search, in which the portion of the array being searched is cut roughly in half in each iteration.

Multidimensional Arrays

The arrays we have studied so far have a single dimension � they represent data items that can be arranged
in a sequence, and therefore they are also called linear arrays. Arrays can have more than one dimension
in C and C++.

Declaring a Multidimensional Array

You declare an array with multiple dimensions using a syntax that is similar to one-dimensional arrays.

Syntax:

elementtype arrayname [size1] [size2] ... [sizeD];

where

• elementtype is any type that already exists

• arrayname is the name of the array

• size1 is the number of elements in the �rst dimension, size2, the number in the second dimension,
and so on, and D is the number of dimensions in the array.

Basically you tack on a pair of square brackets with a number in between for every dimension that you want
the array to have.

Examples

char tictactoe [3][3]; // a 3 by 3 grid of chars

string chessboard[8][8]; // an 8 by 8 grid of strings

int pixel[1024][768]; // a 1024 by 768 grid of ints

double cube [5][5][5]; // a 5 by 5 by 5 cubic grid of doubles

In two dimensions, we think of the �rst dimension as the row, the next as the column. There is no rule for
this and there is nothing in the language that associates the dimensions with rows or columns. It depends
how you program it. In a three dimensional array, the �rst subscript would be like the row, the second like
the column, and the third, like the plane in which this row and column are located, i.e., the height. People
usually refer to the �rst dimension as the row, the second as the column, and the third, if it exists, as the
plane.

10

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

Accessing Elements of Multidimensional Arrays

Higher dimensional arrays are accessed just like one dimensional arrays. The subscripts match their dimen-
sion:

tictactoe[0][2] = 'x'; // puts an 'x' in first row, last column.

chessboard[7][7] = �redqueen�; // puts the string �redqueen� into the lower

// right hand corner of the chessboard.

The following example shows how we could �color� the elements of a checkerboard. It demonstrates accessing
two-dimensional array accesses.

const char RED = ' r ' ;
const char BLACK = 'b ' ;
char checkerboard [ROWS] [COLS] ;
i n t i , j ;

f o r (i = 0 ; i < 8 ; i++)
f o r (j = 0 ; j < 8 ; j++)

i f ((i + j) % 2 == 0)
checkerboard [i] [j] = RED;

e l s e
checkerboard [i] [j] = BLACK;

f o r (i = 0 ; i < 8 ; i++) {
f o r (j = 0 ; j < 8 ; j++)

cout << checkerboard [i] [j] << ' ' ;
cout << "\n " ;

}

Processing Higher Dimensional Arrays

The most commonly used higher dimensional arrays are two-dimensional. They can be used to represent a
wide assortment of objects, such as graphical images, mathematical matrices, screen representations, two-
dimensional surfaces in general, mazes and other 2D cellular arrangements (chess boards, game boards).
Just as one dimensional arrays go hand in hand with for-loops, two-dimensional arrays are naturally paired
with nested for-loops.

The following example shows a code snippet that creates a random grid of asterisks. Notice that the middle
loop is not a nested loop. Sometimes two-dimensional data can be processed within a single loop.

const i n t COLS = 100 ;
const i n t ROWS = 80 ;
const i n t MAXSTARS = COLS∗ROWS/10 ;
char g r id [ROWS] [COLS] ;
i n t i , j , count = 0 ;

srand (time (0)) ;

11

Software Design Lecture Notes

Arrays

Prof. Stewart Weiss

// I n i t i a l i z e the g r id to a l l b lanks
f o r (i = 0 ; i < ROWS; i++)

f o r (j = 0 ; j < COLS; j++)
gr id [i] [j] = ' ' ;

whi l e (count < MAXSTARS) {
i = random(ROWS) ; // generate a random row index
j = random(COLS) ; // generate a random column index
g r id [i] [j] = ' ∗ ' ; // put an a s t e r i s k the re
count++;

}

// Pr int out the g r id
f o r (i = 0 ; i < ROWS; i++) {

f o r (j = 0 ; j < COLS; j++)
cout << gr id [i] [j] ;

cout << "\n " ;
}

Multidimensional Array Parameters1

To understand how to use multidimensional array parameters, you need to remember how one-dimensional
array parameters are used. When you write a function declaration such as

void process(double data[], int size);

you are telling the compiler that the function named process will be given an array of basetype double as
the �rst argument and an integer as the second argument. The array parameter data[] is just the starting
address of the array that is passed to it. The compiler knows that it is of type double, so it knows where
the remaining array elements are loacted in memory, because it knows how many bytes are in the double
type. In other words, the array parameter tells the compiler where the start of the array is and how many
bytes are in each entry, and this is all that the compiler needs.

This same logic applies to multidimensional arrays. The compiler needs to know the size of each element and
the starting address. This means that the array parameter must be written with the size of every dimension
except the leftmost one, as in

void processdata(int data[][10][20], int size);

which declares that processdata is a function with a 3D array parameter whose second dimension has 10
elements, and third has 20 elements. The compiler thus knows that data[1] starts 200 integers after data[0]
and data[2] starts 200 integers after data[1], and so on.

1This material will not be covered in class.

12

