
Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

A Bit More About I/O in C++

Member Functions of the istream Class

The extraction operator is of limited use because it always uses whitespace to delimit its reads of the input
stream. It cannot be used to read those whitespace characters, for example. The istream class, has an
assortment of other methods of input that are useful for di�erent types of tasks. Remember that all input
�le streams (ifstream objects), all iostream objects (cin, cout, and cerr), and all input string streams
(istringstream objects) are types of istream objects, meaning that they �inherit� all public member
functions (and other public and protected members) from istream. This is a very short tutorial on some of
the member functions of the istream class that may prove to be useful.

The get() Member Functions

The get() member function has six overloaded versions, but only four will be discussed here. The �rst two
versions are for reading single characters at a time.

One Character at a Time

The �rst of these is

int get();

This extracts a single character from the stream and returns its value cast to an integer. It does not return
a char because the char type is unsigned, and when get fails, it might return -1, depending upon the
implementation. get() reads every single character: blanks, tabs, newlines, and so on, one at a time. When
there are no characters, the eof bit is set. This means that you can use this form of get() as follows.

i n t main ()
{

char c ;
whi l e ((c = c in . get ()) && ! c in . e o f ())

cout << c ;
re turn 0 ;

}

This little program will copy the standard input stream to the standard output stream. If you compile this
into a command named copy, for example, and type

copy < oldfile > newfile

it will make a copy of oldfile in newfile.

A second overload has the signature

istream& get (char& ch);

1

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

This also extracts a single character from the stream, but does not return it. Instead it stores it in its
call-by-reference parameter ch. Like the �rst, if the end of �le is reached, it sets the eof bit and does not
alter the value of ch. The preceding program could be written using this version of get() as follows.

i n t main ()
{

char c ;
whi l e (c in . get (c) && ! c in . e o f ())

cout << c ;
re turn 0 ;

}

Reading Strings

The two remaining overloads can be used to read data into C strings, not C++ strings! Unlike the
versions that read one character at a time, these reads are delimited. This means that they read until either
they read a certain number of characters or they see a delimiter character, which is by default a newline,
and they do not remove that delimiter from the input stream. Because the delimiter is not removed from
the input stream, the next time they are called on that stream, they will read nothing because the delimiter
is the next character they would read. Therefore, for the next call to read beyond the delimiter, it must be
removed by some other means. These functions are really more useful when it is expected that the delimiter
will not be found, and that �nding the delimiter is the exceptional case. The examples will clarify this point.

There are two prototypes:

istream& get (char* str, streamsize n);

istream& get (char* s, streamsize n, char delim);

The only di�erence between these is that the �rst uses the newline character as the delimiter and the second
lets the caller choose the delimiter. They both extract characters from the input stream and store them into
the C string beginning at str. Characters are extracted until either (n - 1) characters have been extracted
or the delimiting character is found. In other words, if the delimiter is reached before (n-1) characters have
been read, reading stops, or if (n-1) characters have been read but the delimiter has not been reached,
reading also stops. In either case the string is padded with a NULL byte after the last character. The
extraction also stops if the end of �le is reached in the input sequence or if an error occurs during the input
operation. If get() extracts no characters, it sets the failbit on the stream.

If the delimiter is found, it is not extracted from the input sequence. The next call to this version of the get()
function will return nothing, will not remove it, and will set the failbit to true preventing any further input
operations on the stream. If you want to force this character to be extracted, you must use the getline()
member function.

The point of providing a second argument is to prevent the C string from being over�owed. You should
always set it to no more than the size of the array pointed to by the �rst argument.

The number of characters read by any of the previous input operations can be obtained by calling the
member function gcount(). The gcount() function is useful when using the string-reading versions of
get() because you can test when they have stopped reading anything. The next program will read a single
line of text, breaking it up into chunks of size 10 with a ':' between the chunks.

i n t main ()
{

char s t r [1 0] ;
c in . get (s t r , 1 0) ;

whi l e (c in . gcount () > 0) {
cout << s t r << " : " ;

2

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

c in . get (s t r , 1 0) ;
}
cout << endl ;

r e turn 0 ;
}

The following program shows how to use get() properly when either stopping criterion may occur: a
delimiter was found or (n-1) characters were read. It uses getline() to read the delimiter, and it clears the
failbit when it reads nothing.

#inc lude <iostream>
#inc lude <sstream>
#inc lude <s t r i ng>
us ing namespace std ;

#de f i n e CHUNKSIZE 14

i n t main ()
{

char s t r [CHUNKSIZE] ;
char junk [2] ;
i s t r i n g s t r e am i s s ;
i n t i = 0 ;

s t r i n g s t rda ta =
"12345678901234\n"
"123456789012345678\n"
"123456\n"
"1234567890123\n"
"123456789012\n"
"1234567890123456789012345678\n"
"12345678901\n"
"123456789012345678901\n"
"12345678901234567\n"
"1234567890123\n " ;

i s s . s t r (s t rda ta) ; // Make i s s a stream l i k e a text f i l e with t h i s s t r i n g

whi l e (! i s s . e o f ()) {
i s s . get (s t r , CHUNKSIZE) ;
// i f get () read no charac te r s , i t s e t the f a i l b i t , so we c l e a r i t
// Otherwise we p r in t what we got
i f (i s s . gcount () == 0)

i s s . c l e a r () ;
e l s e

cout << i << " " << s t r << endl ;

// I f gcount < CHUNKSIZE−1 we found the de l im i t e r , so remove i t
i f (i s s . gcount () < CHUNKSIZE−1)

i s s . g e t l i n e (junk , 2) ;
i++;

}
cout << endl ;
r e turn 0 ;

}

3

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

The output is the sequence of chunks that are read by successive calls to get(). A line of output can never
be larger than the chunk size minus one, and will be smaller when the newline is found �rst. After each call
to get() we check whether get() read nothing. If it did, it set the failbit, and no input will be possible on
the stream after that, so we must clear it.

After that we check whether (CHUNKSIZE-1) chars were read. If less, it found the delimiter, so getline() is
used to extract it. Because the last character in the stream is a newline, getline() will read it. The next
call to get() will read nothing, and iss.gcount() will be less than (CHUNKSIZE-1), causing getline() to
run again. This time getline() will encounter the end-of-�le condition and set the eofbit on the stream
and the loop will exit.

The getline() Member Functions

The getline() functions that are members of the istream class are not the same as the global getline()
function. The ones that are part of istream are called on an istream object, just like the get() functions
above, e.g.

char str[10];

cin.getline(str, 10);

The global getline() function is called with a stream object as its argument, and has a C++ string
argument:

string s;

getline(cin, s, 10);

It is easy to get these confused. The distinction, once again:

• member function needs C string

• global function needs C++ string

The getline() member functions of the istream class are similar to the get() member functions that take a
C string argument, except that they extract the delimiter and they set the failbit under di�erent conditions.
Their prototypes are

istream& getline (char* str, streamsize n);

istream& getline (char* str, streamsize n, char delim);

Unlike the get() functions, these work nicely for reading text �les line by line, and they are suitable for
any type of reading tasks where the text is delimited and the delimiter must be read and discarded. The
only caveat is that the size of the read should be large enough that the delimiter is found within the �rst
(n-1) characters, otherwise you have to deal with the failbit being set. Thus, if you know the line size, for
example, is never larger than 200 characters, call it with

cin.getline(str, 200);

Now the details. Calling

input.getline(str, n, delim) ;

4

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

where input is an input stream, str is a C string, and delim is some character used as a delimiter, will
extract characters from the stream until one of three conditions occurs:

1. end-of-�le occurs on input, in which case it sets the eofbit on the input stream;

2. the delimiter delim is the next available input character, in which case the delimiter is extracted but
not stored into str;

3. n is less than one or (n-1) characters are stored into str, in which case the failbit is set on the input
stream.

These checks are made in the stated order. This way, if there are (n-1) characters followed by a delimiter,
it will not set the failbit, because it �rst �nds the delimiter before checking whether (n-1) characters have
been stored.

The implication of the above is that when you use getline(), you have to check whether it stopped reading
because it found the delimiter, or it stopped because it read (n-1) characters, or it reached end-of-�le. The
following examples show how to do this.

The �rst program reads from an input �le speci�ed on the command line and outputs a copy of that �le on
the standard output, i.e., the terminal.

#inc lude <iostream>
#inc lude <fstream>
#inc lude <c s td l i b >
us ing namespace std ;

/∗ copy from f i l e argument to stdout ∗/
i n t main (i n t argc , char ∗ argv [])
{

char bu f f e r [1 0] ;
i f s t r e am f i n ;

i f (argc < 2) {
c e r r << "Usage : " << argv [0] << " f i l e \n " ;
e x i t (1) ;

}

f i n . open (argv [1]) ;
i f (! f i n) {

c e r r << "Could not open" << argv [1] << " f o r read ing . \ n " ;
e x i t (1) ;

}

f i n . g e t l i n e (bu f f e r , 1 0) ;
whi l e (! f i n . e o f ()) {

cout << bu f f e r ;
i f (f i n . f a i l ())

f i n . c l e a r () ;
e l s e

cout << endl ;
f i n . g e t l i n e (bu f f e r , 1 0) ;

}
cout << endl ;
r e turn 0 ;

}

5

Software Design Lecture Notes
A Bit More About I/O in C++

Prof. Stewart Weiss

It uses a string of size 10, which we will call buffer, to store the characters read by getline(). Therefore,
we repeatedly call getline() with 10 as its streamsize argument.

After the appropriate error-checking, it enters a loop in which it checks for end-of-�le upon entry, and
repeatedly calls getline(). It checks whether the failbit was set by the immediately preceding call. If it was
not set, this means that getline() found the delimiter, so the program prints a newline (since getline()

does not store it into buffer). If the failbit was set, it implies that 9 characters were read but no delimiter
was found, and all we have to do is unset the failbit using the clear() member function of the istream

class. It cannot be the case that we reached end-of-�le, otherwise we would not be in the loop, so clearing
the �ags is safe here.

An alternative to the loop in the above listing is the following:

whi l e (! f i n . e o f ()) {
f i n . g e t l i n e (bu f f e r , 1 0) ;
cout << bu f f e r ;
i f (! f i n . e o f () && f i n . f a i l ())

f i n . c l e a r () ;
e l s e

cout << endl ;
}
re turn 0 ;

Instead of calling getline() before entering the loop and again at the bottom, we can call it upon entering
the loop. But in this case we cannot simply clear the �ags if the failbit is set, because the eofbit might be set
by the last call to getline(). Therefore the condition for clearing is slightly di�erent. Also, we can remove
the last output of a newline when the loop ends, since that is now super�uous.

6

