
CSci 132 Practical UNIX and Programming

Assignment 3, Fall 2018

Prof. Stewart Weiss

Assignment 3, Due October 4

1 Summary

This assignment gives you practice with writing shell scripts. Shell scripting is also known as bash program-
ming. Your shell is bash, and when you write a shell script you are writing a bash script, which means that
you are really writing a program in the bash programming language. You may not have thought about it in
this way before, but that is precisely what you have been doing. bash is not just a command line interface
to the UNIX kernel; it is a programming language.

The reason that this seemingly semantic di�erent matters now is that soon you will begin writing programs
in another programming language, Perl, and it is a good time to realize that this will not be a giant step
but a sequence of small steps towards mastering Perl. By learning how to write bash programs, you are also
learning how to write programs in general.

2 Some Useful bash Commands

We have been calling your programs shell scripts. A script is a program, make no bones about it. Scripts
are programs written in a scripting language, which is a special kind of programming language. All scripting
languages are programming languages, but not vice versa. The distinction will be explained in a later lecture.
I will call bash both a programming language and a scripting language.

When you type a command such as who, you are really telling bash to run the who command. Similarly, when
you type the command date, you are telling bash to run the date command. These are simple commands
for bash because all it has to do is �nd the �le that contains the command and execute that �le. But bash
has other, more complex instructions, which we also call statements.

One such instruction is the if-instruction, whose simplest form is

if <test_expression>

then

<sequence of statements>

fi

where <test_expression> is a statement that is interpreted to be true or false, and <sequence of statements>

is any sequence of statements. (The if-statement is more general than this; we are starting simple.) The test
statement has the form

test <expression>

where the <expression> is one one many di�erent possible forms.

Example

if test $# -ne 2

then

echo �usage: $0 arg1 arg2�

exit

fi

echo �You typed two arguments: $1 and $2�

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License. 1

http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 132 Practical UNIX and Programming

Assignment 3, Fall 2018

Prof. Stewart Weiss

When bash executes this statement, it �rst evaluates the test statement

test $# -ne 2

This statement compares $# to 2. If the test evaluates to true, which means that the number of command
parameters ($#) is not equal to 2 (-ne 2), then the statements between then and fi are executed. If the
test is not true, bash skips over these statements and executes what comes after them, which is the second
echo command. The -ne is a �not equal� operator. There are also �ve other operators: -eq, -lt, -gt, -le,
-ge, meaning equal, less-than, greater-than, less-than-or-equal-to, and greater-than-or-equal-to.

The bash programming language has several statements that are known as looping statements. A looping
statement is one that makes it possible to repeat a sequence of statements one or more times. For example,
bash has a looping statement called a while-statement, whose form (syntax) is

while <expression>

do

<list-of-statements>

done

in which <expression> is usually the test command, but could be any other statement that is evaluated
as being true or false, and <list-of-statements> is any sequence of statements (including more looping
statements.) The following snippet1 of a script shows one example of a while-statement:

make sure there is a command line argument:

if test $# -lt 1

then

echo "usage: $0 <positive_integer>"

exit

fi

copy the command line value into the variable number

let number=$1

loop while $number > 0

while test $number -gt 0

do

echo -n "." # print one dot

let number=$number-1 # decrease number by 1

done

echo # echo nothing but a newline

The above script will test whether the user entered a command line argument. If not it prints a usage
message and exits. Otherwise it copies the value that the user typed into number. number is just the name
of a storage cell. When you write

let number=$1

you are giving bash the instruction to create a storage cell, name it number, and copy $1 into it. There are
rules for what names are valid. We skip them for now. Assume that all words formed with letters are valid.

After copying the value into number, the script executes the while statement test. If the value stored in
number, which is written as $number, is greater than 0, the statements between do and done are executed,

1A snippet is just a little piece. People call small amounts of code, code snippets.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License. 2

http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 132 Practical UNIX and Programming

Assignment 3, Fall 2018

Prof. Stewart Weiss

and the test is re-evaluated. This goes on and on until the test becomes false, meaning $number equals 0.
That is when the loop exits.

A while-statement is usually called a while loop because if we visualize the sequence of executed statements
as being connected by an imaginary thread, then this thread loops around and around the lines of the script.

bash also has a for-loop and an until-loop. I will not discuss the until-loop here. The for-loop is very di�erent
from the while-loop. It has two forms. One form (again the proper term is syntax) is

for <variable> in <argument-list>

do

<list-of-statements>

done

and the other is

for <variable>

do

<list-of-statements>

done

The <variable> can be any valid variable name (words starting with letters and containing letters, digits,
and the underscore character.) The <argument-list> can be any sequence of words, including words that
look like numbers. Examples are

for number in 1 2 3 4 5 6 7 8 9 10

for name in John Jacob Judy Jocelyn

for file in `ls .`

As you can see, this can be very powerful. As with the while-loop, the list of statements is any list of
statements, but the intention is that the variable plays a role in this list. For example, the script

let sum=0

for number in 1 2 3 4 5 6 7 8 9 10

do

let square=$number*$number

let sum=$sum+$number

echo The square of $number is $square

done

echo The sum of the numbers is $sum.

displays ten lines showing the squares of the �rst ten positive integers and then displays their sum. Notice
how the sum is calculated.

The second form of the for-loop does not need an argument list. It automatically assigns to the variable the
successive words from the command line arguments of the script when it is run:

let count=1

for name

do

echo $count: $name

let count=$count+1

done

The if-statement tests whether the output of the pipe is greater than zero. If it is, then the name is a user
who is logged in at least once.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License. 3

http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 132 Practical UNIX and Programming

Assignment 3, Fall 2018

Prof. Stewart Weiss

3 What Makes a Script Good?

This assignment consists of three exercises in writing relatively simple shell scripts. The objectives when
writing any script are

clarity the script should be easy to understand by someone with a basic knowledge of UNIX and must
be well-documented;

e�ciency the script should use the least resources possible; and

simplicity the script should be as simple as possible.

An example will demonstrate. Suppose we needed a script that would count the number of lines in a �le
named molecule containing the word 'ATOM' anywhere on the line. The following script would achieve
this:

#!/bin/bash

grep ' ATOM ' molecule >| atomcount

wc -l atomcount >| answer

rm atomcount

cat answer

rm answer

but it is very ine�cient because

• it needlessly creates �les and then removes them,

• it is hard to understand because the reader spends more time reading it,

• the user may not be familiar with certain operators such as >|, and

• it is not as simple as it could be.

A simple, well-documented, and e�cient solution is

#!/bin/bash

Displays how many lines in the file molecule contain ATOM as a complete word

Written by Stewart Weiss on September 12, 2018

Usage: The file name is hard-coded into the program. A more general solution

would let the user enter the file name and check if it exists before

doing anything with it. The file molecule MUST be in the current working

directory and must be readable by whoever runs this script.

grep -c ' ATOM ' molecule # The -c option to grep counts matching lines

It has comments to explain what it does and it achieves it with a single command that can be looked up
easily.

4 Tasks

1. Write a bash script named triangletype that expects three positive whole numbers on the com-
mand line, in increasing order. In other words, it should be called like this

$ triangletype 3 12 15

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License. 4

http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 132 Practical UNIX and Programming

Assignment 3, Fall 2018

Prof. Stewart Weiss

The script checks �rst of all that there are three numbers and that they are all positive, and increasing
in value. If either of these conditions is false, it displays a usage message and exits. Suppose we call the
entered numbers a, b, and c, in that order. If the user has entered valid numbers, the script determines
whether :

• the numbers are not the sides of a triangle (a+ b ≤ c)

• the numbers are the sides of an obtuse triangle (a+ b > c and a2 + b2 < c2)

• the numbers are the sides of a right triangle, or (a+ b > c and a2 + b2 = c2)

• the numbers are the sides of an acute triangle (a+ b > c and a2 + b2 > c2)

Exactly one of these conditions must be true. The script should display a message stating which is
true. The message should be at most one line long and should include the numbers and indicate what
is true about them. For example:

$ triangletype 3 4 5

3, 4, and 5 are the sides of a right triangle

2. Write a bash script named realname that accepts any number of words on the command line and for
each word, if this word is the username of a user on our network, it displays this username and the
full name of the user who is assigned this username (as shown in the network password �le which is
displayed with the ypcat passwd command.) The format of each output line should be

username: real-name

If there is no such name in the network password �le, the script should display nothing. I should be
able to run a command such as

$ realname sweiss r2d2 tbw

sweiss: Stewart Weiss

tbw: Tom Walter

Notice that there is no line for r2d2, because r2d2 does not have an account on our system. The real
name of each user is the �fth �eld in the output of ypcat passwd. The �elds are separated by colons
(�:�). Your program must extrapolate the �fth �eld e�ciently. (Hint: awk.) It must also error check
the input and exit with a usage statement if the usage is incorrect.

Create a directory named your-username-hwk3 using the mkdir command, where you replace �your-username�
by your actual username. For example, I would create sweiss-hwk3. Put both scripts into the directory.

5 Grading Rubric

This homework is graded on a 100 point scale. Each script is worth the same number of points. Each script
will be graded primarily on its correctness. This means that it does exactly what the assignment states it
must do, in detail. Correctness is worth 70% of the grade. Then it is graded on its clarity, simplicity, and
e�ciency, as described above. Good comments are worth 15%; good design another 5%, and simplicity and
e�ciency the remaining 5%. Naming all �les and directories correctly is 5%.

6 Submitting the Solution

This assignment is due by the end of the day (i.e. 11:59PM, EST) on Monday, October 4. (I give a grace
period of six hours after that, so it is okay to submit it by 6:00 AM of the following day.)

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License. 5

http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 132 Practical UNIX and Programming

Assignment 3, Fall 2018

Prof. Stewart Weiss

There is a directory in the CSci Department network whose full path name is /data/biocs/b/student.accounts/cs132/hwks/hwk3.
You must put it in that directory.

To submit your project, you must follow the instructions below exactly! Do not deviate from these instruc-
tions.

To be precise:

1. Login using ssh to eniac.cs.hunter.cuny.edu with your valid username and password, and then ssh

into any cslab host. Do not forget this step. You will not be able to run the submithwk command on
eniac.

2. Make sure that you see the your-username-hwk3 directory that you created in the assignment by
typing ls and verifying that it appears in the output list. If you do not see it, then either you are in
the wrong working directory or you misplaced it somehow.

3. Run the command

zip -r your-username-hwk3.zip your-username-hwk3

This will create the �le your-username-hwk3.zip. The zip command is a special command that
compresses the �les in the directory and creates a new �le that can later be extracted by the unzip com-
mand. So it will create a �zip �le� named your-username-hwk3.zip containing your your-username-hwk3
directory and the three �les it contains. For example, I would run

zip -r sweiss-hwk3.zip sweiss-hwk2

4. Run the command

/data/biocs/b/student.accounts/cs132/bin/submithwk 3 your-username-hwk3.zip

Do exactly this. Do not mistype it. The command will create a copy of the �le your-username-hwk3.zip
in the directory

/data/biocs/b/student.accounts/cs132/hwks/hwk3

It will be named hwk3_username , where username is your username on the network. You will not
be able to read this �le, nor will anyone else except for me. If you decide to make any changes and
resubmit, just do all the steps again and it will replace the old �le with the new one. I will be able to
unzip the �le, extracting whatever �les you created. Do not try to put your �le into this directory in
any other way - you will be unable to do this.

Although these instructions may seem complicated, they simplify the way you submit your work and the
way I can retrieve it. If you make mistakes, just start over. If things don't seem to work out, post a question
on Piazza with the details included.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License. 6

http://creativecommons.org/licenses/by-nc-nd/4.0/

	1 Summary
	2 Some Useful bash Commands
	3 What Makes a Script Good?
	4 Tasks
	5 Grading Rubric
	6 Submitting the Solution

