
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Text Editing in UNIXText Editing in UNIX

A short introduction to vi, pico, and gedit

2 CSci 132 Practical UNIX with Perl

About UNIX editors

There are two types of text editors in UNIX: those that run in
terminal windows, called text mode editors, and those that are
graphical, with menus and mouse pointers. The latter require
a windowing system, usually X Windows, to run.
If you are remotely logged into UNIX, say through SSH, then
you should use a text mode editor. It is possible to use a
graphical editor, but it will be much slower to use. I will
explain more about that later.

3 CSci 132 Practical UNIX with Perl

Text mode editors

The three text mode editors of choice in UNIX are vi,
emacs, and pico (really nano, to be explained later.)
vi is the original editor; it is very fast, easy to use, and
available on virtually every UNIX system. The vi
commands are the same as those of the sed filter as well as
several other common UNIX tools.
emacs is a very powerful editor, but it takes more effort to
learn how to use it.
pico is the easiest editor to learn, and the least powerful.
pico was part of the Pine email client; nano is a clone of
pico.

4 CSci 132 Practical UNIX with Perl

What these slides contain

These slides concentrate on vi because it is very fast and
always available. Although the set of commands is very
cryptic, by learning a small subset of the commands, you can
edit text very quickly.
What follows is an outline of the basic concepts that define
vi. It is not a tutorial; it does not contain specific instructions
on the commands in vi. It is intended to supplement a
tutorial, which sometimes fails to describe the big picture. I
have written a tutorial, which you can download here.

http://www.compsci.hunter.cuny.edu/~sweiss/resources/vi_primer.pdf

5 CSci 132 Practical UNIX with Perl

About vi

vi (pronounced vee ai) is the original, full-screen editor for
UNIX systems. It has served the UNIX community for more
than thirty years, having been written by Bill Joy when he was
a graduate student at UC Berkeley in 1976.
Before vi was written, the UNIX text editor was a line-
oriented editor called ex. vi extended the functionality of
ex to give it full-screen capabilities. vi got its name
because to get from ex to the full-screen visual editor, you
had to type "vi".
vi is required to be in all versions of UNIX by the Single
UNIX Standard.

6 CSci 132 Practical UNIX with Perl

vi Versus vim

Through the early 1990's most UNIX users used vi or
emacs. (emacs was written in 1976 by Richard Stallman.)
But an "improved" version of vi called vim (vi IMproved)
was written and released in 1991 by Bram Moolenaar. vim
is upward-compatible from vi, so that everything in vi
works in vim.
vim offers more features than vi, but it is also much harder
to learn than vi (unless all you are trying to do is learn the
part of vim like vi!)

7 CSci 132 Practical UNIX with Perl

Running vi

On the system you are using, when you type the vi
command in bash, vim runs. If you want the original vi
program, you are out of luck. Many people consider vim to
be better than vi, so it has become standard to install vim
instead of vi.

8 CSci 132 Practical UNIX with Perl

Caveat

In these slides, unless I write otherwise, what I am describing
is vi, not vim. That is, if I say something can be done in vi,
it means it can be done in vi and hence in vim also.
If I say something cannot be done, it cannot be done in vi
but it is possible it can be done in vim.

9 CSci 132 Practical UNIX with Perl

Notation

<CR> denotes the character obtained by pressing the Enter
key on the keyboard.
<SP> will denote the space character, obtained by pressing
the space bar. Sometimes it will be written as an underline
"_" instead of <SP>.
<ESC> will represent the character obtained by pressing the
escape key.
A phrase enclosed in angle brackets < > represents the
character(s) described by the phrase. For example, <positive
integer> will mean any positive integer, and <char> will
mean any single character.

10 CSci 132 Practical UNIX with Perl

Modality and finite state machines

vi has three modes, or states. At any given time it is in
exactly one of these modes. With each key that you press, it
either stays in its current mode or changes to a different one.
Things that have a finite number of states and that change
their state depending on what events take place are called
finite state machines, or finite automata. Vending machines
are finite automata. So are most video games.
As an example, a car is always in a specific gear. It can be
neutral, first, second, third, fourth, perhaps fifth, and in
reverse. Some also have a “parked” gear. The driver or the car
itself (in automatic transmissions) changes gears.

11 CSci 132 Practical UNIX with Perl

Starting vi

To edit a file named myfile, at the command prompt, type
vi myfile

When vi starts, the file’s contents are copied into a buffer. A
buffer is just a temporary storage area.
If you just type vi without a filename after it, vi starts up
with a new, empty buffer.
When vi starts it will be in Command Mode.
vi is a 3-state finite automaton, with states

Command Mode
Insert Mode
Last-line Mode

12 CSci 132 Practical UNIX with Perl

A Conceptual model of vi

This is a picture of the way that vi works. The arrows from
one state to another are labeled by the keys that cause its state
to change.

INSERT
MODE

COMMAND
MODE

i,a,o,c,s,I,A,O,C,S,R

:,\,?,!

Enter key

Escape key

LAST LINE
MODE:, /. ?, !

13 CSci 132 Practical UNIX with Perl

Some general rules

vi is CASE-SENSITIVE: everything you type must be in
the correct case.
vi makes a copy of the file in a temporary location to use as
its work buffer. Sometimes this copy is readable by other
people who know how to find it. This security flaw has been
corrected in modern UNIX systems.
The cursor in vi is always on a character, not between
characters.
The start of a line is the leftmost NON-WHITE-SPACE
character in that line.
The end of a line is the last character before the <CR>, even
if it is a white space character.

14 CSci 132 Practical UNIX with Perl

Getting help on vi and vim

There are no on-screen help facilities in vi.
To get help on-screen while using vim, type :help and
follow the instructions on the screen.
You can and should read the vimtutor, which is an
application that displays a document describing how to use
vim.
There are many vi/vim tutorials on the Web. You can
always do a search for them and use them while you are
working.

15 CSci 132 Practical UNIX with Perl

Insert Mode

In Insert Mode, everything you type is inserted into the text at
the text insertion point, until you type <ESC>. For this
reason, there is very little you need to learn about Insert
Mode.
Control characters can be inserted by typing Ctrl-V first
and then the control character. E.g., to put a Ctrl-M into a
file, you type Ctrl-V followed by Ctrl-M.
It is easy to tell when vi is in Insert Mode because it will
display a line at the bottom of the screen with the word

-- INSERT --

16 CSci 132 Practical UNIX with Perl

Last-Line Mode

Last-Line Mode has an odd name, but it is because when vi
is in that mode, there is a prompt on the last line of your
screen.
Last-Line Mode is entered only from Command Mode, and
only by pressing either ':', '/' or '?'.
'/' and '?' tell vi to search in the file for a pattern that you
provide after it followed by a <CR> character. The '/'
searches forward and the '?', backward.

17 CSci 132 Practical UNIX with Perl

Last-Line Mode

The ':' tells vi to expect a command. There are several types
of commands, such as those to
 read a file into the buffer after the current line,
 write the current contents to a file,
 do multiple-line operations such as replacements,

deletions, copying to buffers,
 set line markers or view marked lines,
 view special characters in lines, and
 run a shell command in a subshell.

18 CSci 132 Practical UNIX with Perl

Command Mode

The only way to know that vi is in Command Mode is to
realize that it is not in the other modes. If you do not see the
word "INSERT" and you do not see the prompt for Last-Line
mode (:,/,?), then it is in Command Mode.
In Command Mode you can navigate through the file, make
changes within single lines, and copy parts of lines or paste
into them. Of course Command Mode is the base camp, so it
is from here that you can enter Insert Mode or Last-Line
Mode.
Command Mode also lets you create and run macros and
abbreviations, redraw the screen, and do much more.

19 CSci 132 Practical UNIX with Perl

The most important commands

NAVIGATION: Commands to move the cursor left, down,
up, right are h,j,k, and l; the arrow keys usually work as
well. Other keys move the cursor to various places, such as ^
$ () { } w e b
DELETION: Commands to delete words or characters
include x and d. Whole lines are deleted with dd.
SUBSTITUTION: Substitutions are made by typing
s/pattern/replacement/ within a line.
SEARCHING: Searches within a single line use f or t. To
search in the whole file, enter Last-Line Mode with / or ?.

20 CSci 132 Practical UNIX with Perl

Insertion commands

The most basic and important commands are those that let
you enter Insert Mode in various ways:
i insert to the left of insertion point
a insert to the right of insertion point
o insert a line below current line
O insert a line above current line
I insert at beginning of line
A insert at end of line

 There are others. These are the simplest to use.

21 CSci 132 Practical UNIX with Perl

The Temporary Buffer

vi has a temporary buffer that it uses like a clipboard. It lets
you copy text into the buffer using y (yank) or yy (to copy
multiple lines) and paste text (p or pp) from the buffer into
specific points in the file.
It also makes a copy of text deleted with the delete command
(d or D) in the buffer, so that it can be pasted also.
But unlike the clipboard, the buffer text cannot be retrieved
unless you do so immediately after storing it there.

22 CSci 132 Practical UNIX with Perl

Command repetition

Most commands can be preceded by a positive integer to
affect their behavior in some way. For example:
The command w advances to the next word in the file from
the cursor, and 5w advances to the 5th word from the
cursor.
The a command followed by text and then <ESC> adds the
text to the right of the insertion point, so 8a+====<ESC>
adds the string +==== 8 times:
+====+====+====+====+====+====+====+====
all at once.
In general, a number n preceding a command repeats that
command n times.

23 CSci 132 Practical UNIX with Perl

Getting started

You should read one of the tutorials I have made available:
either my own tutorial, or the vimtutor, or one of the many
websites that do the same thing.

24 CSci 132 Practical UNIX with Perl

About pico

Pico was the message-composition editor in Pine, a UNIX
mail reader developed by the University of Washington. (Pico
= Pine Composer.)
Pine was not a free product, and was distributed as part of
Pine. GNU developed a free, even smaller and faster editor
that essentially incorporates all of the features of pico and
adds a few more. Like all GNU products, it was named
carefully, and is called nano. (pico is now free under the
Apache License.)
In the next few slides I briefly describe the key features of
nano, which are essentially the same as those of pico.

25 CSci 132 Practical UNIX with Perl

Using nano and pico

To edit a file using nano, type nano <filename>.
In nano, there is only one mode, which is equivalent to vi's
Insert Mode. Everything typed is entered into the document.
The arrow keys move the cursor around the screen.
All commands are of the form Ctrl-<char>. In nano (and
pico) at the bottom of the screen there are reminders of the
common commands. They use the notation ^C for Ctrl-C. I
will use that notation here.
It is pretty self-explanatory; to move down by one screenful,
use ^V; to move up, use ^Y. To delete a line, ^K.

26 CSci 132 Practical UNIX with Perl

nano screenshot

27 CSci 132 Practical UNIX with Perl

More about nano

nano has a large number of command line options that
control how it behaves. You should read the man page to
learn about the more useful ones.
At any time, pressing ^G gives you online help.
There are ways to enter characters that are not on the
keyboard (Esc-Esc-ascii-code does it, e.g. Esc-Esc-007
enters the bell character.)
To save a file, i.e., to write the buffer to disk, use ^O.
To exit, ^X.
There are other features, but these are the basic ones.

28 CSci 132 Practical UNIX with Perl

Graphical editors

If you are working on the UNIX console, you can choose
from a large assortment of editors that have graphical user
interfaces. Among these you may find nedit and gedit.
gedit is like Windows Notepad; when it starts up you have
the text on the screen and can use point and click just as in
Notepad or Wordpad.
It has many more features that make it far more powerful than
tools like Notepad, such as built-in parsers. If you are editing
a Perl program for example, it parses it for you and can
format it as well. I use it to edit html because it displays all of
the tags in different colors and makes it easy to edit.

29 CSci 132 Practical UNIX with Perl

About gedit

gedit also has a spellchecker and other tools, but what I find
most useful are the snippets, which are like plug-ins that
extend its capability.
For example, for html documents, there are snippets that can
add templates for any tag, as well as form fields and more.
One can create new snippets for it as well. Overall, gedit is
good choice of editor when logged onto the UNIX host so that
you are working in a desktop environment (GUI), unless you
have learned emacs, which is even more powerful.
So why not use it all of the time?

30 CSci 132 Practical UNIX with Perl

When not to use gedit

gedit requires X Windows to run. X Windows is a
collection of software programs that allow applications to
create windows, track the mouse, and treat the screen as a
bitmapped display in general. You cannot run gedit in a
terminal window!
There is a way to run it across a network using SSH, but it
will be terribly slow if you are at home, many miles from the
UNIX server, and it will require that you install an X
Windows server on your Windows or Mac local computer.

31 CSci 132 Practical UNIX with Perl

What is an X Windows server?

This is a topic beyond this course. Essentially you have to put
software on your local computer that does the job that would
have been done had you been sitting in front of the UNIX
machine in the lab. Roughly speaking, it recreates the X
Window environment on your non-UNIX operating system.
My recommendation is to not bother; all those bits of a bit-
mapped display have to travel back and forth a long way just
to edit a plain text file, and it is not a worthwhile use of the
bandwidth of the network. Use vi, nano, or emacs instead.

	Text Editing in UNIX
	About These Slides
	Text Mode Editors
	What These Slides Contain
	About vi
	vi Versus vim
	Running vi
	Caveat
	Notation
	Modality and Finite State Machines
	Starting vi
	A Conceptual Model of vi
	Some General Rules
	Getting Help on vi and vim
	Insert Mode
	Last-Line Mode
	Last-Line Mode
	Command Mode
	The Most Important Commands
	Insertion Commands
	The Buffer
	Command Counts
	Getting Started
	About pico
	Using nano and pico
	nano Screenshot
	More About nano
	Graphical Editors
	About gedit
	When Not To Use gedit
	What is an X Windows Server?

