
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Filtering ToolsFiltering Tools

Filtering Tools and a Bit More About I/O Redirection

2 CSci 132 Practical UNIX with Perl

Input redirection operator <

The input redirection operator '<', replaces the standard
input of a command by the file that follows it. It is not very
useful for many commands because many commands let you
put the names of files on the command line as their
arguments, so there is no need to use this operator for most
commands.

 cat < myfile

for example, is the same as
 cat myfile

3 CSci 132 Practical UNIX with Perl

Other redirection operators

There are two other redirection operators, '<< ' and '>>'. We
will start with '>>':

The output append operator, >>, which you saw in an earlier
lesson, forces standard output to be appended to a file instead
of replacing the file's contents. This is very useful; it gives
you the means to add new lines to files.

4 CSci 132 Practical UNIX with Perl

An example using >>

To illustrate, suppose that story is a file with a single line
of text as shown below. We'll use >> to lengthen the story.

$ cat story
Once upon a time
$ echo "there was no UNIX." >> story
$ cat story
Once upon a time
there was no UNIX.
$

 You can see that the output of echo was added as a new
line in story, instead of replacing its contents.

5 CSci 132 Practical UNIX with Perl

Another example of >>

There are many system programs that maintain log files, i.e.,
files that record the program's activities. Many of these
programs are shell scripts. When they need to append
information to their log files, they use the append operator.
 I could create a log file to record whenever I started a bash
shell by adding this to my .bashrc file:

 echo "bash started on `tty` at `date`" >> ~/.mylog

 This would add a line to the file .mylog in my home
directory each time I ran a bash shell. The expression `...`
is explained next.

6 CSci 132 Practical UNIX with Perl

And another example

I keep track of my own logins by adding the following line to
my .bash_profile:

echo "Login into `hostname` on `date`" >> .loghist

The .bash_profile file is executed only on logins, not
when a non-login shell runs, so this does not add a line each
time I start a shell.
This line appends the name of the host and the time and date
of login to my .loghist file. The backquoted expressions
`hostname` and `date` cause the hostname and
date commands to run and their output to be substituted for
their backquoted names.

7 CSci 132 Practical UNIX with Perl

The pipe operator |

We have been using the pipe operator, '|', already so this is a
review. The pipe operator connects the output of the
command on its left to the input of the command on its right.
It is a very powerful tool. For example

 ypcat passwd | awk -F: '{print $5}'

displays the real names of everyone with an account on the
computer.

 man -k | grep ' file ' | grep ' write '

looks for commands with the words file and write in the
description.

8 CSci 132 Practical UNIX with Perl

Pipes connecting filters

Commands can be composed upon each other using the pipe
operator. The power of pipes was demonstrated in the first
lesson with the following example:

who | awk '{print $1}' | sort | uniq

In this example, the output of who is the input of awk,
whose output is the input of sort, whose output is the input
of uniq. The output is a list of usernames of people currently
logged in, one per line. (There is a system command, users,
that creates this list also, so we really didn't need to do all that
work!)

9 CSci 132 Practical UNIX with Perl

Filters

The awk, sort, and uniq commands are examples of a
class of UNIX programs called filters.
A filter is a UNIX command whose input and output are
ordinary text, and that expects its input from standard input
and puts its output on standard output.
Filters transform their input in some way, such as by sorting
it, removing words or lines based on a pattern or on their
position in the line or file (e.g., remove every 3rd word in a
line, or remove every 4th line, or remove any line that has a
curse word.)

10 CSci 132 Practical UNIX with Perl

Filtering standard input

Filters may have file name arguments on the command line,
but when they have no arguments, they read from standard
input (the keyboard) instead:

grep 'a clue' thehouse

searches for 'a clue' in thehouse, whereas in

cat thehouse | grep 'a clue'

grep searches through its standard input stream for lines
with 'a clue'.

11 CSci 132 Practical UNIX with Perl

Some useful filters (1)

grep family:
grep, egrep,
fgrep

global regular expression parsers

sort sorts based on several criteria

uniq removes adjacent identical lines

awk full-fledged programming language for
field-oriented pattern matching

cut removes pieces of each line based on
positions

Some of the most useful filters are:

12 CSci 132 Practical UNIX with Perl

More filters

These are filters too:

head, tail display just top or bottom lines of files

cat null filter -- shows everything in order

tac shows lines in reverse order

fold -w<N> display output in width of N columns

sed stream editor -- very powerful filter

wc not exactly a filter, display count of
chars, words, and lines

13 CSci 132 Practical UNIX with Perl

Selected filters

In the next chapter you will learn about patterns (called
regular expressions). Then you will learn how to use the
family of filters that use these patterns.

First we will look a few of the filters that do not require
patterns as arguments.

14 CSci 132 Practical UNIX with Perl

Selected filters: sort

The sort program can be used for sorting one or more text
files in sequence. It can also merge files.
In its simplest form,

sort filename

will sort filename using the first field of the line (first
chars up to the first white space) in ASCII collating order,
displaying the sorted file on the screen (standard output).
sort will ignore case by default in some versions of UNIX,
whereas in others, uppercase and lowercase letters will be
treated as different.

15 CSci 132 Practical UNIX with Perl

Selected filters: sort

The sort program will not sort numbers properly unless
you tell it to sort numerically. It treats them like letters, by
default. For example, if scores contains the two lines

5
10

then we get
$ sort scores
10
5

because "1" precedes "5", so "10" precedes "5".

16 CSci 132 Practical UNIX with Perl

More on Sorting

To sort numerically, you give sort the -n flag:

sort -n filename

as in:
 $ sort -n scores
 5
 10

To reverse the order of the sort use the -r flag

17 CSci 132 Practical UNIX with Perl

Sorting by fields

To sort using the second field of the line,
sort +1 filename

To sort using the third field of the line,
sort +2 filename

and so on.
To use the first field as the primary key, then the second field
as secondary key, use

sort +0 +1 filename

18 CSci 132 Practical UNIX with Perl

Selected filters: uniq

This is the last filter in that pipeline I showed you earlier. The
uniq command removes a line from a file if it is identical to
the one preceding it.
If you sort a file that has duplicate lines, and pipe it through
uniq, the duplicates will be removed.

You could do the same thing by using the -u option with
sort though, so this is not why uniq is unique.

Sometimes there are files that are not sorted but have "runs"
of the same lines. You could sort them using sort -u, but it
is fast to just run uniq on them.

19 CSci 132 Practical UNIX with Perl

Selected filters: fold

The fold filter breaks each line at a fixed number of
characters, so that each line is at most a certain length.

 fold -w8 myfile

will break each line of myfile into 8-character wide lines
except those with fewer characters.

Suppose dnastring has the line

 agatggcggc

fold -c4 dnastring produces
agat
ggcg
gc

20 CSci 132 Practical UNIX with Perl

Selected Filters: wc

The wc command, by default, displays the numbers of lines,
words, and characters in one or more files given on the
command line, or in its input stream if not given any
arguments.

$ wc /etc/passwd
 55 99 2678 /etc/passwd

tells me how many lines, words, and characters are in the
passwd file.
I can give it -m, -w, or -l for chars, words, and lines to
restrict its output.

21 CSci 132 Practical UNIX with Perl

Uses of wc

For example
$ who | wc -l
 2

displays the number of users currently logged in, and
$ ps -ef | grep bash | wc -l

displays how many people are running bash at the moment.

22 CSci 132 Practical UNIX with Perl

Things to try

Read the man pages for sort, fold, and wc. Familarize
yourself with them because they are very useful.
Read about cut; it is also useful.

There is a file in the cs132/data directory named
directors. Sort it by movie title, then by director last
name. Print out just the movie titles. Print out just the
director names.
Download any spreadsheet and save as a CSV (comma
separated values) file, using tabs to separate the fields.
Experiment with sort to see how you can sort this file in
different ways.

	Filtering Tools
	Input Redirection Operator
	Other Redirection Operators
	An Example Using >>
	Another Example of >>
	And Another Example
	The Pipe Operator
	Pipes Connecting Filters
	Filters
	Filtering Standard Input
	Some Useful Filters
	More Filters (2)
	Selected Filters
	Selected Filters: sort
	Selected Filters: sort continued
	More on Sorting
	Sorting By Fields
	Selected Filters: uniq
	Selected Filters: fold
	Selected Filters: wc
	Uses of wc
	Things To Try

