
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Programming ConceptsProgramming Concepts

Programs, Languages, and Algorithms

2 CSci 132 Practical UNIX with Perl

What are programs?

A program is a precise sequence of instructions, intended to
solve a particular problem, that can be carried out by a
machine.
Programs do not have to be run on computers; even before the
age of computers, the Jacquard loom used something like
punchcards to automate the action of a loom. These
punchcards were effectively programs to control the loom.
(You can see a short video about it here:
https://www.youtube.com/watch?v=lwozgRPLVC8)
The important part is that the instructions are unambiguous
and precise.

https://www.youtube.com/watch?v=lwozgRPLVC8

3 CSci 132 Practical UNIX with Perl

Machine instructions

A computer is a machine that can carry out a set of precise,
unambiguous instructions, called machine instructions.
Because computers are digital, electronic devices, machine
instructions are patterns of 0's and 1's. For example,

000000 00001 00010 00110 00000 100000

is a 32-bit instruction to add registers 1 and 2 and store the
result in register 6 on the MIPS processor.
The processor is the part of the computer that executes
instructions. A register is a storage cell inside the processor.

4 CSci 132 Practical UNIX with Perl

Machine languages

The complete collection of machine instructions that a
processor can carry out is called its instruction set.
Machine language is the language that defines machine
instruction programs.
Machine language is to the instruction set as written language
is to a dictionary – the instruction set is the collection of all
instructions, like the words in the dictionary; and machine
language specifies how the instructions are put together to
make programs, in the same way that a written language has
rules for how sentences are created.

5 CSci 132 Practical UNIX with Perl

Assembly languages

In the dawn of the age of modern computers, computer
designers invented assembly language. Assembly language
made it possible to write computer instructions in a more
human-friendly form. The machine instruction
000000 00001 00010 00110 00000 100000

would be written in an assembly language as something like
add $6, $1, $2

6 CSci 132 Practical UNIX with Perl

Assemblers

It is convenient to be able to write instructions in a more
readable form, but to make this possible, someone had to
create a software program that would read the assembly
language program and convert it to machine language.
The software program that reads an assembly language
program and creates a machine language program from it is
called an assembler. It assembles the machine code from
the human-readable instructions.

7 CSci 132 Practical UNIX with Perl

Birth of high-level languages

Assembly language programming was still very limiting.
Imagine trying to write a program containing tens of
thousands of instructions using instructions like

 add $6, $1, $2

In 1957, a team from IBM invented the first high-level
language which they named (FORTRAN). FORTRAN made
it possible to write instructions that were more like the
mathematical equations to which people were accustomed.
FORTRAN paved the way for other high-level languages.

8 CSci 132 Practical UNIX with Perl

High-level languages

In a high-level language, one can write an instruction such as
z = x + y;

that means, "add the number stored in x to the number stored
in y and put the sum into a storage cell named z."

High-level languages also made it easier to get input into
programs and write output from programs, with instructions
like

 print z;

9 CSci 132 Practical UNIX with Perl

Compilers

A high-level language instruction is easy for a programmer to
write, but it has to get converted into machine instructions
that can be executed by the computer.
An instruction like "z = x + y" would be translated first
into an assembly language instruction sequence such as

movl x, %eax
addl y, %eax
movl %eax, z

which would be assembled into machine instructions.
The program that translates from high-level language to
assembly language is called a compiler.

10 CSci 132 Practical UNIX with Perl

From problems to programs: problems

Programs are written to solve problems. This begs the
question, "What does 'solving a problem' actually mean?"
To solve a problem using a computer, the problem has to be
stated precisely.
This may sound obvious and it may sound easy, but it is often
not.

11 CSci 132 Practical UNIX with Perl

From problems to programs: precision

For example, the problem, "find the shortest distance from
New York to Chicago by car" is not very precise.
Does it mean, on major highways only?
If not on highways, then on all possible roads, even private
ones?
If not, then what kinds of roads?
Where in New York does it start? Where in Chicago does it
end?
Is distance in kilometers?

12 CSci 132 Practical UNIX with Perl

From problems to programs: inputs

The problem is usually stated in a more general way. You
would probably not want to know the distance from New
York to Chicago only, but you would want to have a program
that, given any two cities, finds that distance.
Thus, a problem is a general statement that can have many
possible input values. In this case, (New York, Chicago)
would be an input to the problem. So would (Boston, Miami)
for example.
In this case, the input is a pair of names of cities.

13 CSci 132 Practical UNIX with Perl

From problems to programs: outputs

For each input value, there must exist a single, correct
output value, otherwise we cannot define a solution.
In our travel route problem, the output is a single number,
such as 1023 miles. It might also be reasonable for it to be a
range, such as 1020-1030 miles, or 1025, with error ±5. This
may be acceptable in certain circumstances. In either case, the
output must be a unique, clearly defined, set of values.

14 CSci 132 Practical UNIX with Perl

From problems to programs:
computability

There are some problems that cannot be solved by computers.
This was proved in 1931 by Kurt Gödel, and in 1936 by Alan
Turing. Informally, a problem is computable if there is a
procedure that solves it for all possible inputs, and always in a
finite number of steps.

15 CSci 132 Practical UNIX with Perl

From problems to programs: algorithms

Suppose we have a well-defined computable problem. An
algorithm that solves that problem is a set of instructions that,
for each input, finds the output for that input.
In other words, an algorithm is what you would call a solution
to the problem, a method of solving it.
Algorithms are not language specific -- they do not have to be
written in a specific programming language or in any
programming language. They just have to be precise.

16 CSci 132 Practical UNIX with Perl

Algorithms: example 1

Suppose we are given the problem, "Given an integer N > 2,
print "yes" if it is prime and "no" if it is not."
The following algorithm will solve it for us:
1. Let x = 2.
2. If N divided by x has 0 remainder, print "no" and stop.
3. Otherwise,
4. add 1 to x.
5. If x > N/2, print "yes" and stop.
6. If not, go back to step 2.

17 CSci 132 Practical UNIX with Perl

Designing algorithms

The challenge and excitement of software development lies in
algorithm creation.
Given a problem, finding an algorithm that solves it lies at the
core of computer science. It is the creative step, the part that
requires imagination and inventiveness.
Once you have found the algorithm, the rest is getting it to
work. It is exciting to have a finished product, of course, but
the "bang per buck" is less.

18 CSci 132 Practical UNIX with Perl

Programs

Once you have figured out what the algorithm is, the next step
is to convert that algorithm into a program in a programming
language.
A programming language is a language in which you can
write programs that can be translated into machine
instructions for the computer to execute.
English is not a programming language. Perl is. So is C. What
is the difference between English and Perl? Precision.

19 CSci 132 Practical UNIX with Perl

Ambiguity in languages

Natural languages, such as English, can be ambiguous.
Consider these sentences:

The chickens are too hot to eat.
Are the chickens too hot for them to eat, or to be eaten?

I said I would tell you on Friday.
Was it on Friday that I said I would tell you, or did I say at
some unknown time that I would tell you on Friday?

Students like annoying professors. (They do?)
Do students like to annoy professors, or do they like
professors who are annoying?

20 CSci 132 Practical UNIX with Perl

Precision in programming languages

Programming languages must not be ambiguous. In a
programming language, every command or instruction has a
single, precise, predetermined meaning.
For any programming language, there is a document that says
exactly the form and meaning of each instruction.
Form is called syntax and meaning is called semantics.
As a programmer, your job is using the instructions correctly,
which means understanding the syntax and semantics of the
language and making them second nature.

21 CSci 132 Practical UNIX with Perl

Syntax and semantics

The concepts of syntax and semantics are ideas that pertain to
natural languages like the ones you speak, and to all formal
languages, such as programming languages.
When you write a correct English sentence, you are observing
the rules of English grammar. The grammar defines the
syntax of the sentence as well as part of its semantics. When
you read a sentence and determine what it means, you are
implicitly using your knowledge of English semantics.

22 CSci 132 Practical UNIX with Perl

Learning To program

Learning to program moves in two parallel directions at the
same time.
On the one hand, you need to learn the syntax and semantics
of some programming language. In this course, it will be Perl.
On the other hand, you need to learn algorithm development,
independently of any particular programming language. There
are "tricks of the trade" that can be learned, and some
methodology, but at all times, it requires analysis of the
problem and thoughtfulness.

23 CSci 132 Practical UNIX with Perl

About Perl

Perl was written by Larry Wall, and stands for either Practical
Extraction and Report Language, or Pathologically Eclectic
Rubbish Lister. It all depends.
Perl can be used to do many of the tasks commonly done
using shell scripts.
Perl is also a full-fledged programming language.
Perl is not a filter, but filters can be written in Perl. In fact,
you can write a Perl program to do anything that can be done
in *grep, awk, sed, sort, tr, or any other Unix filter you can
think of.
The Perl motto is, “There’s more than one way to do it.”

24 CSci 132 Practical UNIX with Perl

More about Perl

Larry Wall designed Perl to be as natural as possible. He was
a linguist by training, so it has a natural language feel.
To make the most of Perl you need to have "the three great
virtues of a programmer: laziness, impatience, and hubris."
(from Programming Perl, p.xiii)
Perl tends to do what you would want it to do.
You don't need to know a lot of Perl to use it.
Perl has been called “Internet glue” and “Internet duct tape”
because it is used for writing so many web servers and web
pages.

25 CSci 132 Practical UNIX with Perl

Compilers versus interpreters

Shells are interpreted -- a shell script is parsed and executed
one line at a time. This is a slow process. It also has a big
drawback -- your script can have a syntax mistake that is not
detected until after part of it has been executed. Your data can
become corrupted as a result.
Languages like C and C++ are compiled -- the entire program
is translated into machine code before any of it is run. It runs
faster than a script, but each time you want to make a change,
however, small, it has to be recompiled.

26 CSci 132 Practical UNIX with Perl

Is Perl compiled or interpreted?

Perl is both compiled and interpreted:
A Perl program is first compiled into lower level code that is
then interpreted by the Perl engine. This means that all
syntax errors are reported before any instructions are carried
out, and once it is compiled, the program runs much faster
than a shell script.
This makes Perl programs slower than C programs, but much
faster and safer than shell scripts. You shouldn't build
applications with Perl, but you certainly can build utilities and
commands.

27 CSci 132 Practical UNIX with Perl

Running Perl: method 1

You can write a Perl script on the command line in single
quotes and execute it as a command, with the appropriate
command line switches. For example:

$ perl -e 'print "Voila.\n";'

will print
Voila.

on the console.
This is fine for short scripts.

28 CSci 132 Practical UNIX with Perl

Running Perl: method 2

For longer scripts, you can put the script into a file and save
the file.
Create a file with a suitable name. I will call it voila. Put
the single line

print "Voila.\n";

into it. Then you can type

$ perl voila

and it will print
Voila.

on the console.

29 CSci 132 Practical UNIX with Perl

Running Perl: method 3

You can make the file containing your Perl script executable,
and make the following line the very first line in the file:

#!/usr/bin/perl

The file would look like:
#!/usr/bin/perl
print "Voila.\n";

You can then type the file name like a command
$ voila

and it will print Voila. on the console.

30 CSci 132 Practical UNIX with Perl

Running Perl: method 4

The preceding method would only work if the Perl interpreter
was actually located in /usr/bin. If you copied the
program to another computer in which the path to Perl was:

/usr/local/bin/perl

 it would not run. The portable way to write this program is:
#!/usr/bin/env perl
print "Voila.\n";

As long as the perl executable is in your PATH in the
environment, this will work correctly.

31 CSci 132 Practical UNIX with Perl

What comes next

In the next lesson, you will start to learn the syntax and
semantics of Perl and see how a simple problem is solved.
We will begin with the basics and build from there.

	Programming Concepts
	What are Programs?
	Machine Languages
	Machine Languages (2)
	Assembly Languages
	Assemblers
	Birth of High-Level Languages
	High-Level Languages
	Compilers
	From Problems to Programs: Problems
	From Problems to Programs: Precision
	From Problems to Programs: Inputs
	From Problems to Programs: Outputs
	From Problems to Programs: Computability
	From Problems to Programs: Algorithms
	Algorithms: Example 1
	Designing Algorithms
	From Problems to Programs: Programs
	Ambiguity in Languages
	Precision in Programming Languages
	Syntax and Semantics
	Learning To Program
	About Perl
	More About Perl
	Compilers Versus Interpreters
	Is Perl Compiled or Interpreted?
	Running Perl: Method 1
	Running Perl: Method 2
	Running Perl: Method 3
	Slide 30
	Where Do We Go From Here

