
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Control Structures in PerlControl Structures in Perl

Controlling the Execution Flow in a Program

2 CSci 132 Practical UNIX with Perl

Control flow in programs

A program is a collection of statements. After the program
executes one statement, it "moves" to the next statement and
executes that one. If you imagine that a statement is a
stepping stone, then you can also think of the execution flow
of the program as a sequence of "stones" connected by
arrows:

statement

statement

3 CSci 132 Practical UNIX with Perl

Sequences

When one statement physically follows another in a program,
as in
$number1 = <STDIN>;
$number2 = <STDIN>;
$sum = $number1 + $number2;

the execution flow is a simple sequence from one statement
to the next, without choices along the way. Usually the
diagrams use rectangles to represent the statements:

stmt 1 stmt 2 stmt 3

4 CSci 132 Practical UNIX with Perl

Alteration of flow

Some statements alter the sequential flow of the program.
You have already seen a few of these. The if statement is a
type of selection, or branching, statement. Its syntax is
 if (condition) { block }

in which condition is an expression that is evaluated to
determine if it is true or false. If the condition is true when
the statement is reached, then the block is executed. If it is
false, the block is ignored. In either case, whatever statement
follows the if statement in the program is executed
afterwards.

5 CSci 132 Practical UNIX with Perl

The if statement

The flow of control through the if statement is depicted by
the following flow-chart (also called a flow diagram):

if-block
if

(condition)
true

next statement

false

6 CSci 132 Practical UNIX with Perl

Conditions

The condition in an if statement can be any expression.
Although any expression can be used as a condition, in
programs that follow good principles of software design, the
condition is usually one that is built from relational operators
and/or logical operators.
For example,

$x > $y

is a condition that is true if the value of $x is greater than the
value of $y when the condition is reached.

7 CSci 132 Practical UNIX with Perl

Relational operators

Relational operators are operators that compare two expressions.
In math we use operators like >, <, and ≠ to compare numeric
expressions. There is no symbol "≤" on the keyboard, so we use
a pair of symbols "<=" instead. There are six numeric relational
operators in Perl, which are listed in the next slide.

8 CSci 132 Practical UNIX with Perl

Numeric relational operators

The numeric relational operators in Perl are

Operator Example Meaning

> $x > $y true if $x is greater than $y

< $x < $y true if $x is less than $y

== $x == $y true if $x equals $y

!= $x != $y true if $x does not equal $y

>= $x >= $y true if $x > $y or $x == $y

<= $x <= $y true if $x < $y or $x == $y

9 CSci 132 Practical UNIX with Perl

Comparing words

When you look up words in a dictionary, or sort names, you
use an implicit rule for ordering strings, usually called
dictionary order.
a < b < c < … < z orders the letters, and two words w and v
are ordered using the rules:

1. If first letter of w < first letter of v, then w is less than v
2. If the first n letters of w and v are the same, but the (n+1)st of

w < (n+1)st of v, then w is less than v
3. If w is a prefix of v then w is less than v.
4. If the words are identical, then w equals v

10 CSci 132 Practical UNIX with Perl

Comparing strings

In Perl, a different rule is used to order the characters, but the
rule for words remains the same. The characters are ordered
by their ASCII* values. In the ASCII ordering, all
punctuation precedes digits, which precede uppercase letters,
which precede lowercase letters. In UNIX, you can type "man
ascii" to see the ASCII table. Thus,

blank < …

 < 0 < 1 < 2 < ... < 9

 < ... < A < … < Z
 < a < … < z

* (It is a bit more complex than this, but for now this is how you
should think of it.)

11 CSci 132 Practical UNIX with Perl

Comparing strings

Examples:
'A' is less than 'a'

'Zoo' is less than 'apple'

'apple' is less than 'zoo'

'100' is less than '20'

'111' is less than 'a'

The string relational operators are listed on the next page.
Note that they are different from the numerical operators. You
MUST use these when comparing strings.

12 CSci 132 Practical UNIX with Perl

String relational operators

The string relational operators in Perl are

Operator Example Meaning

gt $x gt $y true if $x is greater than $y

lt $x lt $y true if $x is less than $y

eq $x eq $y true if $x equals $y

ne $x ne $y true if $x does not equal $y

ge $x ge $y true if $x gt $y or $x eq $y

le $x le $y true if $x lt $y or $x eq $y

13 CSci 132 Practical UNIX with Perl

Logical values

Perl will convert all expressions to true and false, even if they
have no relational operators in them. The rules are:
 Any number other than 0 is true; 0 is false.
 The empty string ('' or "") is false.
 A string containing only a zero, i.e., "0" or '0', is false.
 Anything that is undefined is false.

Thus, the following expressions are true:
"hello" 62 "00" "\t" "0.0"

and these are false: "0" '0' 0

14 CSci 132 Practical UNIX with Perl

The if-else Statement

The flow of control through the if-else statement is
depicted by the following flow-chart. Notice how it differs
from the if statement.

true-block
if

(condition)
true

false-block
false

next statement

15 CSci 132 Practical UNIX with Perl

The if-else statement

The if statement allows an optional else clause:

if (condition) { true block } else { false block }

Its meaning is:
If the condition is true when the statement is reached, then the
true-block is executed; otherwise the false-block is executed.
In either case, whatever statement follows the if statement
in the program is executed afterwards.

16 CSci 132 Practical UNIX with Perl

Example 1

my ($a, $b);
print "Enter 2 numbers, one per line\n";
chomp($a = <STDIN>);
chomp($b = <STDIN>);
if ($a < $b) {
 print "$a then $b\n";
}
else {
 print "$b then $a\n";
}

What does this do?

17 CSci 132 Practical UNIX with Perl

Example 2

What about this one?
my ($a, $b, $c);
print "Enter 3 increasing numbers, 1 per line\n";
chomp($a = <STDIN>);
chomp($b = <STDIN>);
chomp($c = <STDIN>);
if ($a**2 + $b**2 == $c**2) {
 print "Right triangle\n";
}
else {
 print "Not right triangle\n";
}

18 CSci 132 Practical UNIX with Perl

Optional elsif Clauses

The if-else statement can be augmented with elsif
clauses, which are like a shortcut for "else if …". Notice
there is no 'e' before the 'i' in elsif.

The syntax is
if (condition) { block 1 }

 elsif (condition) { block 2 }
elsif (condition) { block 3 }
and so on …

else {block N }

19 CSci 132 Practical UNIX with Perl

The if-elsif-else Flowchart

block 1
if

(cond)

true

block 2

false

next statement

elsif
(cond)

true

block 3

false

20 CSci 132 Practical UNIX with Perl

Example

my ($a, $b);
print "Enter 2 numbers, one per line\n";
chomp($a = <STDIN>);
chomp($b = <STDIN>);
if ($a < $b) {
 print "$a is less than $b\n";
} elsif ($b < $a) {
 print "$b is less than $a\n";
} else {
 print "The numbers are equal.\n";
}

21 CSci 132 Practical UNIX with Perl

Repetition statements

A repetition statement is a statement that allows a block to be
executed repeatedly, under the program's control. These
statements are called loops. When you see the flow charts for
them you will understand why.
What if you want to write a program to print out the squares
of the first 100 integers? Without repetition statements, your
program would require 100 print statements (assuming one
number per statement.)
Now what if you wanted to print the first 1000 squares, or
10,000 squares?

22 CSci 132 Practical UNIX with Perl

Repetition statements

Repetition statements allow your program to process more
data without increasing in size. They also allow it to process
unknown amounts of data.
The first loop we examine is the while loop:

while (condition) { block }

When the statement is first reached, the condition is
evaluated. If it is true, the block is executed and the process
repeats -- the condition is evaluated and if true, the block is
executed and the process repeated. This goes on until the
condition is false.

23 CSci 132 Practical UNIX with Perl

The while loop flowchart

block
while
(cond)

true

false

next statement

 The while loop flowchart looks like this:

24 CSci 132 Practical UNIX with Perl

while loop: Example

Here is a simple example:
my $rabbits = 2;
while ($rabbits < 1000) {
 $rabbits = int (1.618*$rabbits);
 print "There are now $rabbits rabbits.\n";
}

This loop will test whether $rabbits < 1000. If so, it sets
$rabbits to a larger value, the smallest integer in
1.618*$rabbits, prints out a message, and continues.

25 CSci 132 Practical UNIX with Perl

while loop: Example 2

Here is another example:
my $sqrt = 0;
while ($sqrt * $sqrt <= $number) {
 $sqrt = $sqrt + 1;
}

Given a non-negative number $number, this loop exits when
$sqrt is the smallest integer value such that $sqrt*$sqrt >
$number. In other words, ($sqrt-1)*($sqrt-1)<= $number
and $number < (sqrt)*($sqrt). Therefore $sqrt-1 is
the largest number whose square is at most $number. This is
the integer part of sqrt($number).

26 CSci 132 Practical UNIX with Perl

Use of while loops

The while loop is most useful when you do not know how
much data there is in the input source. In particular, it is
perfect for reading data from input sources whose size is
unknown in advance, such as files and the keyboard. You will
learn this soon.

27 CSci 132 Practical UNIX with Perl

Looking ahead: the split() function

A very useful tool for processing input text is the split()
function. split() is used to break apart a string into a list
of substrings. To be precise:

split(/pattern/, string)

returns a list consisting of the parts of string that don’t
match pattern. E.g.,

my $string = 'name:id:email:phone';
my @fields = split(/:/, $string);
print "@fields\n";
prints: name id email phone

 print "$fields[2]\n";
 # prints: email

28 CSci 132 Practical UNIX with Perl

Processing tab-separated data files

Very often, data is in tab-separated or comma-separated files.
The split() function can extract the data into fields.
Suppose that the input lines contain name, id, email, and
phone data, separated by tabs.
while ($line = <STDIN>) {

 chomp($line);
 ($name,$id,$email,$phone) = split(/\t/,$line);

 print "$name has email address $email\n";
}

You can extract whatever information you want. In this case I
ignored $id and $phone and just used $name and $email.

29 CSci 132 Practical UNIX with Perl

Splitting on white space

A very common task is to split lines on any amount of
whitespace. To split on whitespace, use either the pattern /\
s+/ or the string consisting of a single blank, " ", as
follows.
while ($line = <STDIN>) {

 @words = split(/\s+/, $line);
 #equivalently, @words = split(" ", $line);

 $wc += @words;
}
print "There are $wc words in the files.\n";

30 CSci 132 Practical UNIX with Perl

Parsing files

In a PDB file, lines that represent ATOM records begin like:
 ATOM 1 N MET A 0 24.512 8.259 -9.688

We will use a new input operator to illustrate. Instead of using
 the <STDIN> to input a line, we will use <> without the
STDIN in between the brackets. This “diamond operator” as it
is called can read from files whose names are given on the
command line. The next slide illustrates.

31 CSci 132 Practical UNIX with Perl

Parsing files

In a PDB file, lines that represent ATOM records begin like:
 ATOM 1 N MET A 0 24.512 8.259 -9.688

If we wanted to find all atoms of a specific type, say
nitrogen, we could use the code

 while ($line = <>) {
 @fields = split(/\s+/, $line);
 if ($fields[0] =~ /ATOM/) {
 if ($fields[2] eq "N") {
 print "Atom $fields[1] is N.\n";
 }
 }
 }

32 CSci 132 Practical UNIX with Perl

The until loop

The until loop

until (condition) { block }

is structurally the same as the while loop. The only
different is that the block is repeatedly executed until the
condition is true. The flowchart is the same.

33 CSci 132 Practical UNIX with Perl

for loops

An alternative loop is the for loop, so named because it
starts with the word "for":

for (initialization; condition; update) { block }

When the loop is first reached,
1. The initialization section is executed; then
2. The condition is tested;
3. If the condition is true, the block is executed and the update

is executed, and it starts again in step 2. Otherwise the loop
is exited and the following statement is executed.

34 CSci 132 Practical UNIX with Perl

Example

The following is a simple but very typical example:
for (my $count = 0; $count < 10; $count++) {
 print "$count\n"; # any statement works!
}

When the loop is reached, $count = 0 is executed and then
$count < 10 is tested. Since 0 < 10 is true, the print
statement is executed, then $count++ is executed, making
$count ==1. Now the condition is re-tested. Since 1 < 10,
the print is executed again. This continues until $count ==
10, when the loop exits. Therefore the print statement prints
the values 0, 1, 2, …, 9.

35 CSci 132 Practical UNIX with Perl

Safety of for loops

The for loop, when used in specific ways, is a safe loop to
use because it always terminates. If you always use a for
loop with a condition in the form $var < expression and the
update is always $var++, the loop will always terminate in a
predictable number of iterations. For example, in this loop:
for ($var = start; $var < final; $var++) {
 # any block of statements
}

the enclosed block will be executed final-start times.

36 CSci 132 Practical UNIX with Perl

Dangerous uses of for loops

Sometimes, you will see programs in which for loops are
used in precarious ways, not in the spirit of their intended use.
A common use is:

for (; ;) {
 # block of statements
}

When the condition is empty, it is true. It cannot be changed,
and so nothing will ever stop this loop. This is an example of
an infinite loop. The loop block must have a statement to
force the loop to exit. One such statement is "last".

37 CSci 132 Practical UNIX with Perl

last

The "last" statement (and I do not mean the last statement
but the statement named "last") causes the innermost
enclosing loop to exit immediately:

for (; ;) {
 # useful stuff here
 $response = <STDIN>;
 if ($response eq 'q') {
 last;
 }
}

In this example, when the input is a 'q' then the loop exits.
The next statement executed is whatever follows the loop.

38 CSci 132 Practical UNIX with Perl

The next statement

The next statement causes the program to advance to the
next iteration of the loop, ignoring whatever follows it in the
block. In a for loop, this means that the update is executed
and then the loop condition is tested. For example:

for (my $i = 0; $i < 30; $i++) {
 if ($i % 3 != 0) { next; }
 print "$i\n";
}

This prints multiples of 3, because when $i is not divisible
by 3, the next is executed, bypassing the print
statement.

39 CSci 132 Practical UNIX with Perl

Another example of next

while ($line = <STDIN>) {
 if ($line !~ /\b[A-Z][A-Z]+\b/)
 {

 next;
 }
 print $line;
}

This will print all lines and only lines that contain words of at
least two uppercase letters, because if a line does not match
the pattern /\b[A-Z][A-Z]+\b/, next causes the
program to go back to the condition, bypassing the print
statement.

40 CSci 132 Practical UNIX with Perl

The foreach statement

This is one of the most versatile looping statements. The
foreach statement syntax is

foreach $alias (list) { block }

in which $alias is a variable and list is either an array
variable or a list literal.
The meaning of the foreach statement is that it executes
the block for each value in the list, setting $alias to that
value. If the value in the list is a variable, then $alias is
actually an alias for it, i.e., it acts like another name for the
variable itself.

41 CSci 132 Practical UNIX with Perl

The foreach statement

The principal advantage of the foreach statement over
other looping statements is that because it iterates over all
elements of the list, your program does not need any type of
stopping test in the loop condition.
You do not have to bother with counting the size of the array
or knowing when the last element is reached because the
foreach logic internalizes this.

42 CSci 132 Practical UNIX with Perl

Example

Consider this example.
my $item;
my @array = (1, 2, 3, 4, 5);
foreach $item (@array) {
 $item = 2 * $item;
}
print "@array\n"; # prints 2 4 6 8 10

In this example, $item successively "becomes" $array[0],
then $array[1], up to $array[4]. foreach "knows" when
to stop. Because $item is changed, so is each array element;
thus the array is changed as a result of executing this loop.

43 CSci 132 Practical UNIX with Perl

Another Example

my @vector = (1 .. 100);
my ($item, $prev);
$prev = 1;
foreach $item (@vector) {
 $item = $item * $prev;
 $prev = $item;
}
print "@vector\n";

This is tricky to analyze. What does it do? Try guessing
before you run the demo program.

44 CSci 132 Practical UNIX with Perl

Logical Operators

A logical operator is an operator whose operands have one of
the logical values, true or false, and whose application
results in a logical value as well.
In ordinary speech, we use the words "and" and "or" as
logical operators. For example, one might say,
"If the class is open or you get an overtally, you can register
for the class."
You know that the "or" here means if either clause is true, the
whole premise is true.

45 CSci 132 Practical UNIX with Perl

Perl's Logical Operators

Perl has three logical operators, named and, or, and not. It
also has symbolic versions of these, && (and), ||(or), and !
(not).
The symbolic versions differ in that they have higher
precedence, which means that when you omit parentheses
around expressions, funny things may happen. For now, we
start with and, or, and not.

The logical meanings of word versions and symbolic versions
are the same. I will refer to the abstract logical operators as
AND, OR, and NOT.

46 CSci 132 Practical UNIX with Perl

Logical Semantics

Logical-AND is called conjunction: if a and b are logical
expressions, then

a and b is true if and only if both a and b are true.

Logical-OR is called disjunction: if a and b are logical
expressions, then

a or b is true if and only if either a or b is true, which
also includes the possibility that both are true.

Logical-NOT is called negation: if a is a logical expression,
then

!a is true if and only if a is false.

47 CSci 132 Practical UNIX with Perl

Truth Table for Logical AND

A logical operation can be characterized completely by a truth
table, which is a table that defines the value of the operation
based on its operands. The truth table for logical-AND is
below:

A B A AND B

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

You can see that
A AND B is true
only when both A
and B are true and
false otherwise.

48 CSci 132 Practical UNIX with Perl

Truth Table for Logical OR

A B A OR B

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

You can see in the
table to the right that
A OR B is true when
either A or B is true
and false only when
both are false.

49 CSci 132 Practical UNIX with Perl

Truth Table for Logical NOT

A NOT A

TRUE FALSE

FALSE TRUE

You can see in the
table to the right that
NOT A is true when
A is false and false
when A is true.

50 CSci 132 Practical UNIX with Perl

Example

print "Enter 3 numbers in increasing order.\n";
chomp($x = <STDIN>);
chomp($y = <STDIN>);
chomp($z = <STDIN>);
if (not ($x <= $y and $y <= $z)) {
 print "The numbers are not in increasing
order.\n";

In this example, the condition is of the form not (A and B). It
is true if and only if A is false or B is false, which means
either $x > $y or $y > $z, implying the numbers are not
in order.

51 CSci 132 Practical UNIX with Perl

DeMorgan's Law

The condition
(not ($x <= $y and $y <= $z))

could also have been written
($x > $y or $y > $z)

which is much easier to understand. The first just illustrates
the use of the not and and operators.
The equivalence is a result of DeMorgan's Law, which
basically states that the following are equivalent:
NOT (A AND B) = (NOT A) OR (NOT B)
NOT (A OR B) = (NOT A) AND (NOT B)

52 CSci 132 Practical UNIX with Perl

Lazy Evaluation

Logical AND and OR are lazy evaluation operators in Perl.
This means that they do the least work necessary to get their
results. Consider the statement

if (a and b) { print "true"; }

If a is false, the condition cannot possibly be true, so Perl
does not bother to even evaluate b.
Similarly, in

 if (a or b) { print "true"; }

if a is true, there is no need to evaluate b, since the condition
must be true even if b is false.

53 CSci 132 Practical UNIX with Perl

Use of Lazy Evaluation

You can take advantage of the fact that AND and OR are lazy
operators in your code. Consider this condition:
if ($count != 0 and $sum/$count > 10) { … }

If Perl did not use lazy evaluation, this would cause a divide-
by-zero error if $count were 0. But with lazy evaluation, if
$count is 0, $count != 0 is false and execution will
never reach the division operator.

54 CSci 132 Practical UNIX with Perl

Digging Deeper

The logical operators AND and OR do not really return
logical values; they return the value of the last expression
they evaluate, which is then treated as a logical value if used
in a place where a logical value is expected. For example,
consider

$count = ($count or 1);

If $count > 0, then $count is true and because of lazy
evaluation, the or will not evaluate the 1. The last value the
or evaluated was the value of $count, so $count gets its own
value again. But if $count == 0, it is false, so the or will
evaluate the 1. Thus, 1 is the last value evaluated, so $count
will be assigned 1. No matter what, $count > 0 afterwards!

55 CSci 132 Practical UNIX with Perl

More Lazy Evaluation

This can be used, for example, to simplify the end of the
averaging program from earlier in these slides. By using this:
$count = ($count or 1);
print "The average is ", $total/$count, "\n";

we are guaranteed that the average is either 0, if no numbers
were entered (0/1 = 0) or whatever the true average is.

56 CSci 132 Practical UNIX with Perl

The symbolic logical operators

You can use the symbolic versions of the logical operators
instead of the word versions, but only if you understand that
they are higher precedence operators. The previous statements
can be
$count = $count || 1;
print "The average is ", $total/$count, "\n";

because the || has higher precedence than the assignment
operator. The or operator does not, which is why in the
preceding slide, the expression was enclosed in parentheses.

57 CSci 132 Practical UNIX with Perl

Statement modifiers

This is a topic of not very high importance. It is yet another
instance of Perl's providing many more ways to do things than
are necessary, but which are sometimes more convenient or
easier to read.
All of the control statements, i.e., the if, while, for,
next, last, and so on, can be used to modify a simple
single statement by appending the control statement to the
end of the statement. The requirement is that it must be a
simple statement that is modified, not a block and not a
control statement.
The next slide will demonstrate the syntax.

58 CSci 132 Practical UNIX with Perl

Statement modifier example 1

Instead of writing
 if ($line !~ /\b[A-Z][A-Z]+\b/) {
 next;
 }

you can write
 next if $line !~ /\b[A-Z][A-Z]+\b/ ;

It does exactly the same thing. Notice that there is no
semicolon after next and no parentheses enclosing the
condition.

59 CSci 132 Practical UNIX with Perl

Statement modifier example 2

Instead of writing
my $var = 0;
while ($var < 10) {
 print $var++, "\n";
}

you can write
my $var = 0;
print $var++,"\n" while $var < 10;

It has the same effect. Remember that it must be a simple
statement that is modified, not a block and not a control
statement.

60 CSci 132 Practical UNIX with Perl

Summary

Flowcharts are a means of displaying the execution flow in a program
or group of statements.
Conditions are expressions that are evaluated as being true or false.
Perl has different relational operators for strings and numbers.
The if statement and its variants are branching statements.

The while, for, and foreach statements are looping statements.

The next and last statements are means of altering the flow
within a loop.
Logical operators can add complexity to conditions and help solve
other problems. They are lazy evaluators.
Statement modifiers are a convenience for added program clarity;
they can sometimes make programs easier to read.

	Control Structures in Perl
	Control Flow in Programs
	Sequences
	Alteration of Flow
	The if statement
	Conditions
	Relational Operators
	Numeric Relational Operators
	Comparing Words
	Comparing Strings
	Comparing Strings
	String Relational Operators
	Logical Values
	The If-else Statement
	The if-else Statement
	Example
	Example 2
	Optional elsif Clauses
	The if-elsif-else Flowchart
	Example
	Repetition Statements
	Repetition Statements
	The while Loop Flowchart
	The while Loop
	The while Loop: Second Example
	Use of while Loops
	Looking Ahead: The split() Function
	Processing Tab-Separated Data Files
	More General Splitting
	Parsing Files
	Parsing files (2)
	The until Loop
	for Loops
	Example
	Safety of for Loops
	Dangerous Uses of for Loops
	last
	The next Statement
	Another Example of next
	The foreach Statement
	The foreach Statement
	Example
	Another Example
	Logical Operators
	Perl's Logical Operators
	Logical Semantics
	Truth Table for Logical AND
	Truth Table for Logical OR
	Truth Table for Logical NOT
	Example
	DeMorgan's Law
	Lazy Evaluation
	Use of Lazy Evaluation
	Digging Deeper
	More Lazy Evaluation
	The Symbolic Logical Operators
	Statement Modifiers
	Statement Modifier Example 1
	Statement Modifier Example 2
	Summary

