
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Modularity and Reusability IIModularity and Reusability II

Packages and modules in Perl

2 CSci 132 Practical UNIX with Perl

Libraries

Imagine a world without libraries. Suppose instead that the
only way to find a particular book in which you were
interested was to look in all of the bookstores in your
neighborhood, and then in the city, and then beyond, until
you found it. Even then, you'd have to buy it instead of
borrowing it.

A library is an ecologically friendly way to share books;
people know where to look for them so they do not waste
time and energy, much fewer copies of books are needed,
thereby saving paper, and people do not have to spend money
that they could use on other things.

3 CSci 132 Practical UNIX with Perl

Similar reasoning applies to functions.

If you have written functions that you think you ought to save
for a rainy day, you should put them someplace where you,
and perhaps your friends, or even strangers, can find them.

You could put all related functions into a single file, and if the
structure of that file were standardized in a way that all
programs would know how to fund the functions in it, then
Perl programs that people wrote could borrow the functions
defined in your file. (But unlike a book, a function can be
borrowed in a reusable way -- it can be borrowed
simultaneously by an unlimited number of programs.)

Function libraries

4 CSci 132 Practical UNIX with Perl

Creating function libraries

The questions that must be are:

(1) How can we create a library of functions?

(2) How will programs know where to look for these
libraries, once we learn how to create them?

(3) How do we know what libraries are available already, so
that we do not "reinvent the wheel?"

The answer to Question (2) lies in some Perl magic and in how
you set up your shell environment. Question (3)'s answer
comes next. The answer to Question (1) comes after that.

5 CSci 132 Practical UNIX with Perl

Perl modules

In Perl, function libraries are called modules.

Dozens of Perl modules are installed automatically when you
install Perl on your machine.

If you installed ActivePerl, you can read the ActivePerl
documentation to see the list of standard libraries, the ones that
are typically installed by default. See the perlmodlib page.

6 CSci 132 Practical UNIX with Perl

Perl modules (2)

To see the list of all modules installed on your computer, you
can enter following complicated command to the shell, all on
one line, (it is line-wrapped on this slide)

 % perl -MFile::Find=find -MFile::Spec::Functions
 -Tlwe 'find { wanted => sub { print canonpath $_
 if /\.pm\z/ }, no_chdir => 1 }, @INC'

Instead, I put this into a shell script called listperlmods
and just type listperlmods instead.

7 CSci 132 Practical UNIX with Perl

Learning about an installed module

To learn what a particular installed module does, type

 perldoc modulename

at the command line. You do not need the .pm extension on
the module's filename. For example,

 perldoc English

will display a description like a man page for the English
module. Not all modules have documentation, but the standard
ones do.

Again, if you have ActivePerl installed, you can also read its
documentation. See the perlmodlib page.

8 CSci 132 Practical UNIX with Perl

Using an installed module

If you find a module that you want to use in a program, you put
the

 use ModuleName;

declaration into your program, where ModuleName is the
name of the module without the .pm. For example,

 use English;

 will import the English module into your program.

Soon I will explain more about the use declaration.

9 CSci 132 Practical UNIX with Perl

Other available modules

Hundreds modules are freely available on the Internet.

The Comprehensive Perl Archive Network (CPAN) is an
archive of Perl modules and scripts contributed by members of
the Perl community. You can browse the collection of modules
at http://www.perl.com/CPAN to see what is available or
search for a specific module using the search engine on the site.

http://www.perl.com/CPAN

10 CSci 132 Practical UNIX with Perl

Obtaining modules

If you find a module that you would like to use in your
programs, you need to download it and install it on your
computer.

All of the modules on the CPAN site are compressed archive
files that contain self-installation scripts. There are instructions
for how to install these modules on the CPAN page

 http://www.perl.com/CPAN/modules/INSTALL.html

An alternative to visiting the CPAN site, on a UNIX machine
with Perl installed, is to run a CPAN shell using the CPAN.pm
module.

http://www.perl.com/CPAN/modules/INSTALL.html

11 CSci 132 Practical UNIX with Perl

CPAN.pm

You can run a CPAN shell program by entering the command

 perl -MCPAN -e shell

Answer yes to all of the questions it asks. It will create a
.cpan directory in your home directory and fill it with various
configuration files. It will eventually issue a prompt:

 cpan[1]>

Type "h" for help. You will see that there are commands for
searching for modules and doing many other things.

12 CSci 132 Practical UNIX with Perl

Searching for modules

You can search for modules on the CPAN site with the m
command, which lets you enter a Perl regular expression, e.g.

 cpan[1]> m /protein/

The CPAN shell will list modules that match your search
expression. One in the list might be

 Bio::Align::ProteinStatistics

To download a module, such as the above, use get:

 get Bio::Align::ProteinStatistics

 which will download files to your .cpan directory.

13 CSci 132 Practical UNIX with Perl

Installing the module

The steps to install the downloaded module are to run three
CPAN commands

 make Bio::Align::ProteinStatistics

 test Bio::Align::ProteinStatistics

 install Bio::Align::ProteinStatistics

The first customizes the module to your environment and
creates necessary files from the templates in the module. The
second tests to make sure everything was built properly. The
third puts the module and its man pages in the appropriate
directories on your machine.

14 CSci 132 Practical UNIX with Perl

Problems using CPAN.pm

Unless this is your own machine and you can obtain root
permissions, you will probably encounter problems installing
the module using the CPAN shell.

The make files will require root permissions to install the
module in all likelihood.

But you can still use the CPAN shell for searching, and then
visit the CPAN site to download and install the module
yourself manually, as is described next.

15 CSci 132 Practical UNIX with Perl

Manually installing modules

The simpler method is to download the module directly from
the CPAN site, unpack the module (which is either a .tar.gz
file for UNIX or a .zip on Windows), and cd into the
unpacked directory, where you will run the commands:

 mkdir ~/perllib
 perl Makefile.pm PREFIX=~/perllib
 make
 make test
 make install

These will install the module in your home directory in the
directory perllib.

16 CSci 132 Practical UNIX with Perl

How programs find modules

The previous slide suggested that you create a directory
~/perllib into which you could put any modules that you
download and install.

How will your program find that directory? Not by magic.

Perl maintains an array called @INC (which is short for
"includes"), that is a list of directories in which it searches for
modules that your program uses via the use declaration. We
can see what this list is by typing

 perl -V

 at the command line.

17 CSci 132 Practical UNIX with Perl

The @INC array

Alternatively, you can run the following Perl script:

 print join("\n", @INC)

 which prints the directories in the @INC array, one per line.

You will not find ~/perllib in the list. To get Perl to look
there, you can either add a command line switch when running
Perl, or better, add the line

 PERL5LIB=$HOME/perllib

to your .bashrc file. Remember to run your .bashrc file
(by typing . ~/.bashrc) to make the change immediate.

18 CSci 132 Practical UNIX with Perl

Creating your own module

We have answered Questions (2) and (3) from Slide 4. The
question remains, how can you create a module?

We could answer this question very mechanically, with a list of
steps, but you ought to understand a bit about why these steps
are necessary.

We begin by explaining the concept of a package.

19 CSci 132 Practical UNIX with Perl

Modules are packages

A module is a set of related functions in a file, not just any file,
but a special kind of file called a package.

In order to understand how to create modules, you first need to
understand packages.

Perl packages solve the problem of name conflicts in
programs. We begin there.

20 CSci 132 Practical UNIX with Perl

Name conflicts

Imagine that we have figured out how to create files with
borrowable functions, and that programs can somehow
"import" these functions to within their "borders."

What would happen if the functions used the same variable
names as the program.

For example, what if the function file used a variable
$count to keep track of fruit flies on the loose, and your
program also had a variable named $count that counted
bananas. Then as your program increased $count, the
imported functions might think there was a fruit fly plague.

21 CSci 132 Practical UNIX with Perl

Namespaces

Many modern programming languages utilize the concept of a
namespace to avoid name conflicts. A namespace is a
container that stores names that are unique within the
container.

For example, Music could be a namespace containing bow
and Ships could be a different namespace also containing
bow.

To refer to the bow from Music, we would write Music::bow,
and to refer to the bow from Ships, we would write
Ships::bow.

22 CSci 132 Practical UNIX with Perl

Packages

In Perl, a namespace is called a package. A package
encapsulates the names declared within it. Every package has
a symbol table that contains the names declared within it, as
well as information about those names.
Your Perl program is automatically called package main.

You create a package using the package declaration:
 package PACKAGENAME;

where PACKAGENAME is a legal Perl identifier that becomes
the name of your package
Everything from that point until the end of the innermost
enclosing block or the next package declaration becomes part
of the package.

23 CSci 132 Practical UNIX with Perl

Package example

The following declares a package named SimpleStuff
containing two function definitions.

 package SimpleStuff;

 sub pi {return atan2(1.0, 1.0)*4;}

 sub e {return exp(1.0); }

The functions pi and e are contained in SimpleStuff and
could be called using the notation

 SimpleStuff::pi();

 SimpleStuff::e();

24 CSci 132 Practical UNIX with Perl

Packages and name conflicts

Suppose that we have two packages named Euclidean and
Manhattan, and each contains a function named distance.
A program that imports these functions for its own use (we'll
see how shortly) would distinguish between them using the
qualified names

 Euclidean::distance;

 Manhattan::distance;

In other words, the package name becomes part of the function
name, separated by the "::".

25 CSci 132 Practical UNIX with Perl

Where do package declarations go?

A package declaration can be placed anywhere that an
ordinary statement can be placed, but since our objective is to
build a function library, we want to put our package
declaration in its own separate file (and put that file in the
perllib directory in our home directory.)

Although we could put a package declaration in the program
file, that would not make our package reusable.

Therefore, we outline the steps for creating a package in a
separate file.

26 CSci 132 Practical UNIX with Perl

How to create a package file

Start the file with the package declaration, e.g.

 package foo;

Put the function definitions into the file. If these functions
need to use any common shared variables, make them lexical
variables (declared with the my operator).

Although package files can have any name, since our goal is
to create a module, you must give the file the same name as
the package itself, with a ".pm" extension. In our case, the
file should be named foo.pm.

27 CSci 132 Practical UNIX with Perl

Example: the Euclidean package

We create a package file named Euclidean.pm with a
single function in package Euclidean:
package Euclidean;
sub distance
{
 my ($point1, $point2) = @_;
 my @point1 = @$point1;
 my @point2 = @$point2;
 my $distance = 0;
 for (my $i = 0; $i < @point1; $i++) {
 $distance += ($point2[$i] - $point1[$i])**2;
 }
 return sqrt($distance);
}

28 CSci 132 Practical UNIX with Perl

Using a package in a program

There are two ways to include a package or a module in a
program: the use declaration and the require declaration.

The require declaration has slightly different meaning than
use: the require declaration brings the package in at
runtime, whereas use brings it in at compile-time.

To bring our Euclidean package with require, we would
put the line

 require "Euclidean.pm";

in the beginning of the program.

29 CSci 132 Practical UNIX with Perl

Using a package in a program (2)

Alternatively, we can write

 use Euclidean;

In either case, to use the distance function, we would
write something like
 $dist = Euclidean::distance(\@point1,\@point2);

where the arguments are passed as array references.

30 CSci 132 Practical UNIX with Perl

Importing functions

At this point, the only way to use the distance function from
Euclidean in our program is to qualify its name:

Euclidean::distance()

If we want to add the distance function to the main program's
namespace so that we do not have to qualify it, i.e., so we can
write:

$dist = distance(\@point1,\@point2);

then we need to import the function from the package into the
program.

31 CSci 132 Practical UNIX with Perl

Importing functions (2)

To convert a package into a module that exports some or all
of its functions (or other symbols such as variables), we need
to add several lines to the beginning of the package.

 package Euclidean;

 use vars qw(@EXPORT @EXPORT_OK @ISA);

 require Exporter;

 @EXPORT_OK = qw (distance);

 @ISA = qw(Exporter);

The use vars line declares a few global variables that we
need for exporting symbols.

32 CSci 132 Practical UNIX with Perl

Importing functions (3)

The line
 require Exporter;

tells Perl that we need the Exporter module, which is a
module that can export our function definitions for us to the
programs that use our module.

The line
 @EXPORT_OK = qw (distance);

does the actual exporting. The @EXPORT_OK array is filled
with the names of the functions that we want to export, in this
case, only the distance function.

33 CSci 132 Practical UNIX with Perl

Importing functions (4)

The line
 @ISA = qw(Exporter);

helps Perl to find the functions in the Exporter module, since it
is not located here. The actual meaning of this @ISA array is
beyond the scope of this set of slides.

We must modify the use declaration in the main program: We
need to write

 use Euclidean 'distance';

 instead of
 use Euclidean;

to tell Perl that we want to bring in the distance function in
particular.

34 CSci 132 Practical UNIX with Perl

The revised main program

The main program can now call the distance function
without qualification:

$dist = distance(\@point1,\@point2);

Of course, if for some reason, you have two modules that each
contain a function named distance, you should use the
fully-qualified name anyway, so that you know which module's
distance you are actually using. This is a pretty rare occurrence
 anyway.

35 CSci 132 Practical UNIX with Perl

Export Methods

We used the @EXPORT_OK array in the preceding module.
This is the safe thing to do. The symbols listed in the
@EXPORT_OK array will only be added to the main program's
namespace if they are listed in the use declaration in a comma-
separated list.

If we put symbols into the @EXPORT array, in contrast, they
are automatically brought into the main program's namespace,
without an explicit request. This "pollutes" the main program
with symbols it did not necessarily want. It is best to avoid it.

36 CSci 132 Practical UNIX with Perl

What else?

We have barely scratched the surface of the topic of modules.
However, this is enough for you to write modules and use
them.

Nonetheless, there are a few things that we must cover. One is
how to document the modules properly. Another is how to use
Perl's h2xs program, which can set up skeleton modules for
you. The latter is not really necessary, whereas the former is.

The topic of documentation is covered in a separate set of
slides.

	Modularity and Reusability II
	Libraries
	Function Libraries
	Creating Function Libraries
	Perl Modules
	Perl Modules (2)
	Learning About an Installed Module
	Using an Installed Module
	Other Available Modules
	Obtaining Modules
	CPAN.pm
	Searching for Modules
	Installing the Module
	Problems Using CPAN
	Manually Installing Modules
	How Programs Find Modules
	The @INC Array
	Creating Your Own Module
	Modules Are Packages
	Name Conflicts
	Namespaces
	Packages
	Package Example
	Packages and Name Conflicts
	Where Do Package Declarations Go?
	How To Create a Package File
	Example: The Euclidean Package
	Using a Package in a Program
	Using a Package in a Program (2)
	Importing the Functions
	Importing Functions (2)
	Importing Functions (3)
	Importing Functions (4)
	The Revised Main Program
	Export Methods
	What Else?

