
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Data Abstraction & Problem Solving with
C++

Fifth Edition

by Frank M. Carrano

Chapter 1: Principles of
Programming and Software Engineering

1-2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Software Engineering and
Object-Oriented Design

• Coding without a solution design increases
debugging time

• A team of programmers for a large software
development project requires
– An overall plan
– Organization
– Communication

• Software engineering
– Provides techniques to facilitate the development of

computer programs

1-3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Examination of Problem
Solving

• Problem solving
– The process of taking the statement of a problem and

developing a computer program that solves that
problem

• Object-oriented analysis and design (OOA / D)
– A process for problem solving
– A problem solution is a program consisting of a system

of interacting classes of objects
• Each object has characteristics and behaviors related to the

solution
• A class is a set of objects having the same type

1-4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Aspects of an Object-Oriented
Solution

• A solution is a C++ program consisting of:
– Modules

• A single, stand-alone function
• A method of a class
• A class
• Several functions or classes working closely

together
• Other blocks of code

1-5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Aspects of an Object-Oriented
Solution

• Functions and methods implement
algorithms
– Algorithm: a step-by-step recipe for performing

a task within a finite period of time
– Algorithms often operate on a collection of data

1-6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Aspects of an Object-Oriented
Solution

• Create a good set of modules
– Modules must store, move, and alter data
– Modules use algorithms to communicate with

one another

• Organize your data collection to facilitate
operations on the data

1-7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

• Abstraction
– Separates the purpose of a module from its

implementation
– Specifications for each module are written

before implementation
– Functional abstraction

• Separates the purpose of a module from its
implementation

1-8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

– Data abstraction
• Focuses on the operations of data, not on the

implementation of the operations

– Abstract data type (ADT)
• A collection of data and a set of operations on the

data
• You can use an ADT’s operations without knowing

their implementations or how data is stored, if you
know the operations’ specifications

1-9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

– Data structure
• A construct that you can define within a

programming language to store a collection of data

– Develop algorithms and ADTs in tandem

1-10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

• Information hiding
– Hide details within a module
– Ensure that no other module can tamper with

these hidden details
– Public view of a module

• Described by its specifications

– Private view of a module
• Implementation details that the specifications should

not describe

1-11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Principles of Object-Oriented
Programming (OOP)

• Object-oriented languages enable us to build
classes of objects

• A class combines
– Attributes (characteristics) of objects of a single type

• Typically data
• Called data members

– Behaviors (operations)
• Typically operate on the data
• Called methods or member functions

1-12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Principles of Object-Oriented
Programming

• Three principles of object-oriented programming
– Encapsulation

• Objects combine data and operations
• Hides inner details

– Inheritance
• Classes can inherit properties from other classes
• Existing classes can be reused

– Polymorphism
• Objects can determine appropriate operations at execution time

1-13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Object-Oriented Analysis and
Design

• Analysis
– Process to develop

• An understanding of the problem
• The requirements of a solution

– What a solution must be and do
– Not how to design or implement it

– Generates an accurate understanding of what end users
will expect the solution to be and do

– Think about the problem, not how to solve it

1-14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Object-Oriented Analysis and
Design

• Object-oriented analysis (OOA)
– Expresses an understanding of the problem and the

requirements of a solution in terms of objects within the
problem domain

– Objects can represent
• Real-world objects
• Software systems
• Ideas

– OOA describes objects and their interactions among
one another

1-15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Object-Oriented Analysis and
Design

• Object-oriented design (OOD)
– Expresses an understanding of a solution that fulfills

the requirements discovered during OOA
– Describes a solution in terms of

• Software objects
• The collaborations of these objects with one another

– Objects collaborate when they send messages (call each other’s
operations)

– Collaborations should be meaningful and minimal

– Creates one or more models of a solution
• Some emphasize interactions among objects
• Others emphasize relationships among objects

1-16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Unified Modeling Language (UML)
– A tool for exploration and communication during the

design of a solution
– Models a problem domain in terms of objects

independently of a programming language
– Visually represents object-oriented solutions as

diagrams
– Its visual nature is an advantage, since we are visual

creatures
– Enables members of a programming team to

communicate visually with one another and gain a
common understanding of the system being built

1-17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• UML use case for OOA
– A set of textual scenarios (stories) of the solution

• Each scenario describes the system’s behavior under certain
circumstances from the perspective of the user

– Focus on the responsibilities of the system to meeting a
user’s goals

• Main success scenario (happy path): interaction between user
and system when all goes well

• Alternate scenarios: interaction between user and system
under exceptional circumstances

– Find noteworthy objects, attributes, and associations
within the scenarios

1-18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

– An example of a main success scenario
• Customer asks to withdraw money from a bank account
• Bank identifies and authenticates customer
• Bank gets account type, account number, and withdrawal

amount from customer
• Bank verifies that account balance is greater than withdrawal

amount
• Bank generates receipt for the transaction
• Bank counts out the correct amount of money for customer
• Customer leaves bank

1-19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

– An example of an alternate scenario
• Customer asks to withdraw money from a bank account
• Bank identifies, but fails to authenticate customer
• Bank refuses to process the customer’s request
• Customer leaves bank

1-20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• UML sequence (interaction) diagram for OOD
– Models the scenarios in a use case
– Shows the interactions among objects over time
– Lets you visualize the messages sent among objects in a

scenario and their order of occurrence
– Helps to define the responsibilities of the objects

• What must an object remember?
• What must an object do for other objects?

1-21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-2 Sequence diagram for the main success scenario

1-22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-3 Sequence diagram showing the creation of a new object

1-23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• UML class (static) diagram
– Represents a conceptual model of a class of objects in a

language-independent way
– Shows the name, attributes, and operations of a class
– Shows how multiple classes are related to one another

1-24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-4 Three possible class diagrams for a class of banks

1-25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-5 A UML class diagram of a banking system

1-26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Class relationships
– Association

• The classes know about each other
• Example: The Bank and Customer classes

– Aggregation (Containment)
• One class contains an instance of another class
• Example: The Bank and Account classes
• The lifetime of the containing object and the object contained

are not necessarily the same
– Banks “live” longer than the accounts they contain

1-27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Class relationships (Continued)
– Composition

• A stronger form of aggregation
• The lifetime of the containing object and the object

contained are the same
• Example: A ballpoint pen

– When the pen “dies,” so does the ball

1-28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Class relationships (Continued)
– Generalization

• Indicates a family of classes related by inheritance
• Example: Account is an ancestor class; the attributes and

operations of Account are inherited by the descendant classes,
Checking and Savings

1-29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Notation
– Association

• A relationship between two classes is shown by a connecting
solid line

• Relationships more specific than association are indicated with
arrowheads, as you will see

• Multiplicities: Optional numbers at the end(s) of an association
or other relationship

– Each bank object is associated with zero or more customers
(denoted 0..*), but each customer is associated with one bank

– Each customer can have multiple accounts of any type, but an
account can belong to only one customer

1-30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Notation (Continued)
– Aggregation (Containment)

• Denoted by an open diamond arrowhead pointing to the
containing class

– Composition
• Denoted by a filled-in diamond arrowhead pointing to the

containing class

– Generalization (Inheritance)
• Denoted by an open triangular arrowhead pointing to the

ancestor (general or parent) class

– UML also provides notation to specify visibility, type,
parameter, and default value information

1-31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Software Life Cycle

• Describes the phases of software development
from conception to deployment to replacement to
deletion
– We will examine the phases from project conception to

deployment to end users
– Beyond this development process, software needs

maintenance to correct errors and add features
– Eventually software is retired

1-32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Iterative and Evolutionary
Development

• Iterative development of a solution to a problem
– Many short, fixed-length iterations
– Each iteration builds on the previous iteration until a

complete solution is achieved
– Each iteration cycles through analysis, design,

implementation, testing, and integration of a small
portion of the problem domain

– Early iterations create the core of the system; further
iterations build on that core

1-33Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Iterative and Evolutionary
Development

• Each iteration has a duration called the timebox
– Chosen at beginning of project
– Typically 2 to 4 weeks

• The partial system at the end of each iteration
should be functional and completely tested

• Each iteration makes relatively few changes to the
previous iteration

• End users can provide feedback at the end of each
iteration

1-34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

• RUP gives structure to the software development process
• RUP uses the OOA/D tools we introduced
• Four development phases:

– Inception: feasibility study, project vision, time/cost estimates
– Elaboration: refinement of project vision, time/cost estimates, and

system requirements; development of core system
– Construction: iterative development of remaining system
– Transition: testing and deployment of the system

1-35Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

Figure 1-7 RUP development phases

1-36Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

• Inception phase
– Define initial set of system requirements
– Generate a core set of use case scenarios (about 10% of total

number)
– Identify highest-risk aspects of solution
– Choose iteration timebox length

1-37Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

• Elaboration phase
– Iteratively develop core architecture of system
– Address highest-risk aspects of system

• Most potential for system failure, so deal with them first
– Define most of the system requirements
– Extends over at least 2 iterations to allow for feedback
– Each iteration progresses through OO analysis and design

(use case scenarios, sequence diagrams, class diagrams), coding,
testing, integration, and feedback

1-38Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

• Construction phase
– Begins once most of the system requirements are formalized
– Develops the remaining system
– Each iteration requires less analysis and design
– Focus is on implementation and testing

• Transition phase
– Beta testing with advanced end users
– System moves into a production environment

1-39Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

Figure 1-8 Relative amounts of work done in each development phase

1-40Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

What About the Waterfall Method
of Development?

• Develops a solution sequentially by moving through
phases: requirements analysis, design, implementation,
testing, deployment

• Hard to correctly specify a system without early feedback
• Wrong analysis leads to wrong solution
• Outdated and should not be used
• Do not impose this method on RUP development

1-41Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Achieving a Better Solution

• Analysis and design improve solutions
• What aspects of one solution make it better than another?
• What aspects lead to better solutions?

1-42Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions

• Cohesion
– A highly cohesive module performs one well-defined task

• A person with low cohesion has “too many irons in the fire”
– Promotes self-documenting, easy-to-understand code
– Easy to reuse in other software projects
– Easy to revise or correct
– Robust: less likely to be affected by change; performs well under

unusual conditions
– Promotes low coupling

1-43Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions

• Coupling
– Modules with low coupling are independent of one another
– System of modules with low coupling is

• Easier to change: A change to one module won’t affect another
• Easier to understand

– Module with low coupling is
• Easier to reuse
• Has increased cohesion

– Coupling cannot be and should not be eliminated entirely
• Objects must collaborate

– Class diagrams show dependencies among classes, and hence
coupling

1-44Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions
• Minimal and complete interfaces

– A class interface declares publicly accessible methods (and data)
• Describes only way for programmers to interact with the class

– Classes should be easy to understand, and so have few methods
• Desire to provide power is at odds with this goal

– Complete interface
• Provides methods for any reasonable task consistent with the

responsibilities of the class
• Important that an interface is complete

– Minimal interface
• Provides only essential methods
• Classes with minimal interfaces are easier to understand, use, and

maintain
• Less important than completeness

1-45Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions

– Signature: the interface for a method or function
• Name of method/function
• Arguments (number, order, type)
• Qualifiers such as const

1-46Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

• A module’s operation contract specifies its
– Purpose
– Assumptions
– Input
– Output

• Begin the contract during analysis, finish during
design

• Use to document code, particularly in header files

1-47Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

• Specify data flow among modules
– What data is available to a module?
– What does the module assume?
– What actions take place?
– What effect does the module have on the data?

1-48Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

• Contract shows the responsibilities of one module to
another

• Does not describe how the module will perform its task
• Precondition: Statement of conditions that must exist

before a module executes
• Postcondition: Statement of conditions that exist after a

module executes

1-49Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

First draft specifications
sort(anArray, num)

// Sorts an array.

// Precondition: anArray is an array of num
 integers; num > 0.

// Postcondition: The integers in anArray are
 sorted.

1-50Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

Revised specifications
sort(anArray, num)

// Sorts an array into ascending order.

// Precondition: anArray is an array of num

// integers; 1 <= num <= MAX_ARRAY, where

// MAX_ARRAY is a global constant that specifies

// the maximum size of anArray.

// Postcondition: anArray[0] <= anArray[1] <= ...

// <= anArray[num-1], num is unchanged.

1-51Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Verification

• Assertion: A statement about a particular condition at a
certain point in an algorithm
– Preconditions and postconditions are examples of assertions

• Invariant: A condition that is always true at a certain point
in an algorithm

• Loop invariant: A condition that is true before and after
each execution of an algorithm’s loop
– Can be used to detect errors before coding is started

1-52Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Verification

• Loop invariant (continued)
– The invariant for a correct loop is true:

• Initially, after any initialization steps, but before the loop
begins execution

• Before every iteration of the loop
• After every iteration of the loop
• After the loop terminates

1-53Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Verification

• It is possible to prove the correctness of some
algorithms
– Like proving a theorem in geometry
– Starting with a precondition, you prove that each

assertion before a step in an algorithm leads to the
assertion after the step until you reach the postcondition

1-54Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

What is a Good Solution?

• A solution is good if:
– The total cost it incurs over all phases of its life cycle is

minimal

• The cost of a solution includes:
– Computer resources that the program consumes
– Difficulties encountered by users
– Consequences of a program that does not behave

correctly

• Programs must be well structured and documented
• Efficiency is one aspect of a solution’s cost

1-55Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming

1. Modularity
2. Style
3. Modifiability
4. Ease of Use
5. Fail-safe programming
6. Debugging
7. Testing

1-56Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Modularity

• Modularity has a favorable impact on
– Constructing programs
– Debugging programs
– Reading programs
– Modifying programs
– Eliminating redundant code

1-57Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming: Style

1. Use of private data members
2. Proper use of reference arguments
3. Proper use of methods
4. Avoidance of global variables in modules
5. Error handling
6. Readability
7. Documentation

1-58Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Modifiability

• Modifiability is easier through the use of
– Named constants
– The typedef statement

1-59Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Ease of Use

• In an interactive environment, the program
should prompt the user for input in a clear
manner

• A program should always echo its input
• The output should be well labeled and easy to

read

1-60Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Fail-Safe Programming

• Fail-safe programs will perform reasonably no matter
how anyone uses it

• Test for invalid input data and program logic errors
• Check invariants
• Enforce preconditions
• Check argument values

1-61Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Debugging

• Programmer must systematically check a
program’s logic to find where an error occurs

• Tools to use while debugging:
– Single-stepping

– Watches

– Breakpoints

– cout statements

– Dump functions

1-62Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Testing

• Levels
– Unit testing: Test methods, then classes
– Integration testing: Test interactions among modules
– System testing: Test entire program
– Acceptance testing: Show that system complies with

requirements

1-63Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Testing

• Types
– Open-box (white-box or glass-box) testing

• Test knowing the implementation
• Test all lines of code (decision branches, etc.)

– Closed-box (black-box or functional) testing
• Test knowing only the specifications

1-64Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Testing

• Developing test data
– Include boundary values
– Need to know expected results

1-65Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Testing

• Techniques
– assert statements to check invariants
– Disable, but do not remove, code used for testing

• /* and */
• Booleans
• Macros

1-66Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Key Issues in Programming:
Testing

• Stubs
– An incompletely implemented method that simply

acknowledges that it was called

• Drivers
– A module that tests another module
– For example, a main function

1-67Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Software engineering
– Techniques to facilitate development of programs

• Software life cycle
– Phases through which software progresses, from

conception to deployment to replacement to deletion

• Loop invariant
– Property that is true before and after each iteration of a

loop

• Evaluating the quality of a solution
– Correctness, efficiency, development time, ease of use,

cost of modification

1-68Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Practice abstraction: Focus on what a
module does, not how
– For data-management problems

• Encapsulate data with operations by forming classes

– For algorithmic tasks
• Break into subtasks

• UML is a modeling language used to
express OO designs visually

1-69Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• A solution should be easy to modify
– Modular
– Independent of implementation of it modules

• Each function/method should be as independent as
possible and perform one well-defined task

• Each function/method should include a comment:
purpose, precondition, and postcondition

• A program should be as fail-safe as possible
• Effective use of available diagnostic aids is one of

the keys to debugging
• Use “dump functions” to help to examine and

debug the contents of data structures

	Chapter 1: Principles of Programming and Software Engineering
	Software Engineering and Object-Oriented Design
	An Examination of Problem Solving
	Aspects of an Object-Oriented Solution
	Slide 5
	Slide 6
	Abstraction and Information Hiding
	Slide 8
	Slide 9
	Slide 10
	Principles of Object-Oriented Programming (OOP)
	Principles of Object-Oriented Programming
	Object-Oriented Analysis and Design
	Slide 14
	Slide 15
	Applying the UML to OOA/D
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	The Software Life Cycle
	Iterative and Evolutionary Development
	Slide 33
	Rational Unified Process (RUP) Development Phases
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	What About the Waterfall Method of Development?
	Achieving a Better Solution
	Evaluation of Designs and Solutions
	Slide 43
	Slide 44
	Slide 45
	Operation Contracts
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Verification
	Slide 52
	Slide 53
	What is a Good Solution?
	Key Issues in Programming
	Key Issues in Programming: Modularity
	Key Issues in Programming: Style
	Key Issues in Programming: Modifiability
	Key Issues in Programming: Ease of Use
	Key Issues in Programming: Fail-Safe Programming
	Key Issues in Programming: Debugging
	Key Issues in Programming: Testing
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Summary
	Slide 68
	Slide 69

