
CSci 335 Software Design and Analysis 3
Project 2, Phase 1, revised 4/7/19

Prof. Stewart Weiss

Programming Project 2, Phase 1 (revised)

1 Overview

In your second programming project, you will ultimately be working with a dataset consisting of all entrances
and exits to the stations of the New York City Transit Authority. This dataset, like the others you have
used in this course, is part of the New York City OpenData project, and is provided by the Metropolitan
Transit Authority (MTA).

In this �rst part of the assignment, you will implement a hash table, in preparation for the larger assignment.
To test your hash table, you will need to write a minimal main program.

2 Objectives

This project's goals are:

• to give you more experience working with real, large, open data sets.

• to give you experience creating a very simple hash table.

• to give you experience programming the on-line disjoint set problem.

• to give you a problem that has practical application and that can be extended to become a useful
application.

3 Phase 1 Requirements

The directory on the server,

/data/biocs/b/student.accounts/cs335_sw/project2_files

contains three header �les:

gps.h

hash_item.h

hashtable.h

The �rst, gps.h, is the interface to a GPS class that you must implement.

The second, hash_item.h, is a base class that will serve as the item type for the things that go into your
hash table. It is a minimal class:

c l a s s __ItemType
{
pub l i c :

/∗∗ ItemType () con s t ruc to r
∗ Creates an item with given va lues
∗/

__ItemType () ;

/∗∗ operator==() r e tu rn s t rue i f g iven parameter equal item
∗ @precondit ion : rhs i s i n i t i a l i z e d
∗ @param __ItemType [in] rhs : item to compare
∗ @return bool 0 i f rhs i s not equal , 1 i f i t i s .

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 2, Phase 1, revised 4/7/19

Prof. Stewart Weiss

∗/
bool operator==(__ItemType rhs) const ;

/∗∗ code () r e tu rn s an unsigned i n t e g e r f o r the item
∗ @note Every item , r e g a r d l e s s o f i t s key type , should be mapped
∗ to a p o s i t i v e i n t e g e r va lue . I f the key i s a s t r i ng , t h i s should
∗ a s s i gn a number to the s t r i n g . I f i t i s a number already , t h i s
∗ has the opt ion to a s s i gn a d i f f e r e n t number .
∗ @precondit ion : item i s i n i t i a l i z e d
∗ @return unsigned i n t
∗/
unsigned i n t code () ;

/∗∗ operator <<() wr i t e s item onto the g iven stream
∗ @precondit ion : the stream i s open and the item i s i n i t i a l i z e d
∗ @postcondit ion : a l l data o f the item i s wr i t t en to the stream
∗ @param ostream [in , out] os i s the stream to be wr i t t en to
∗ @param __ItemType [in] item i s the item to be wr i t t en
∗ @return the changed stream
∗/
f r i e nd ostream & operator <<(ostream & os , __ItemType item) ;

} ;

Your job for now is to derive some concrete class from it that you can use for inserting things into your
hash table in order to test it. For example, you could give it two member variables, a string and an integer
(strong suggestion) and de�ne two items to be equal if they have the exact same string value.

The third �le, _hash_table.h, de�nes the abstract base class for a hash table that you must implement.
You are free to use whatever hash function you like, but you must use open addressing to resolve collisions,
and your solution must be e�cient.

#inc lude <s t r i ng>
#inc lude "_hash_item . h"

us ing namespace std ;

// The INITIAL_SIZE should be l a r g e enough that i t w i l l not need to be
// r e s i z ed , but you might want to implement r e s i z i n g in your c l a s s .
#de f i n e INITIAL_SIZE 4096

c l a s s __HashTable
{
pub l i c :

/∗∗ f i nd () s ea r che s in t ab l e f o r g iven item
∗ @precondit ion : item ' s key value i s i n i t i a l i z e d
∗ @postcondit ion : i f matching item i s found , i t i s f i l l e d with value from
∗ t ab l e .
∗ @param ItemType [in , out] item : item to search f o r
∗ @return i n t 0 i f item i s not in tab le , and 1 i f i t i s
∗/
v i r t u a l i n t f i nd (__ItemType & item) const = 0 ;

/∗∗ i n s e r t () i n s e r t s the g iven item in to the tab l e

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 2, Phase 1, revised 4/7/19

Prof. Stewart Weiss

∗ @precondit ion : item i s i n i t i a l i z e d
∗ @postcondit ion : i f item i s not in t ab l e a lready , i t i s i n s e r t e d
∗ @param ItemType [in] item : item to i n s e r t
∗ @return i n t 0 i f item i s not i n s e r t e d in tab le , and 1 i f i t i s
∗/
v i r t u a l i n t i n s e r t (__ItemType item) = 0 ;

/∗∗ remove () removes the s p e c i f i e d item from the tab le , i f i t i s the re
∗ @precondit ion : item ' s key i s i n i t i a l i z e d
∗ @postcondit ion : i f item was in tab l e a lready , i t i s removed and copied
∗ i n t o the parameter , item
∗ @param ItemType [in , out] item : item to remove
∗ @return i n t 0 i f item i s not removed from the tab le , and 1 i f i t i s
∗/
v i r t u a l i n t remove (__ItemType item) = 0 ;

/∗∗ s i z e () r e tu rn s the number o f i tems in the tab l e
∗ @precondit ion : none
∗ @postcondit ion : none
∗ @return i n t the number o f i tems in the tab l e
∗/
v i r t u a l i n t s i z e () const = 0 ;

/∗∗ l i s t a l l () l i s t s a l l i tems cu r r en t l y in the tab l e
∗ @note This func t i on wr i t e s each item in the tabe l onto the g iven stream .
∗ Items should be wr i t t en one per l i n e , in whatever format the
∗ under ly ing _ItemType output operator formats them .
∗ @param ostream [in , out] the stream onto which items are wr i t t en
∗ @return i n t the number o f i tems wr i t t en to the stream
∗/
v i r t u a l i n t l i s t a l l (ostream & os) const = 0 ;

} ;

#end i f /∗ __HASH_TABLE_H__ ∗/

4 Programming Requirements

Your hash table implementation must not depend on anything not de�ned in the interface. It must work for
any item type that has the interface de�ned above for the __ItemType base class.

If I create a program that makes calls to your hash table class, your class should work regardless of what
kinds of things my item type is; it cannot need to be modi�ed.

You must write a main program to test your class. I do not need to see that main program. I do not want
to see that main program. I will write my own program to test it. If mine cannot call your class without
errors, your class does not implement the interface correctly.

5 Programming Rules

Your program must conform to the programming rules described in the Programming Rules document
on the course website. It is to be your work and your work alone.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 2, Phase 1, revised 4/7/19

Prof. Stewart Weiss

6 Grading Rubric

Phase 1 will be graded based on the following rubric, based on 20 points.

• If the hashtable.cpp �le fails to compile to object code (meaning g++ -c hashtable.cpp fails), on a
cslab host, it receives 4 points. This is the maximum it can receive. It will be assessed using the rest
of the rubric below.

• Correctness of the code is worth 60%

• Design (choices of algorithms, data structures, modularity, organization): 15%

• Documentation: 20%

• Style and proper naming: 5%

7 Submitting the Assignment

Phase 1 of this project is due by the end of the day (i.e. 11:59PM, EST) on April 12, 2019. Create a
directory named named username _project2.1. where username is to be replaced by your CS Department
network login name. Put all project-related source-code �les and a README into that directory. Do not

place anything else into this directory. You will lose 1% for each �le that does not belong there, and
you will lose 2% if you do not name the directory correctly1.

Next, create a zip archive for this directory by running the zip command

zip -r username_project2.1.zip ./username_project2.1

This will compress all of your �les into the �le named username_project2.1.zip. Do not use the tar

compress utility.

Assuming this �le is in your current working directory you submit by entering the command

submit_cs335_hwk 5 username_project2.1.zip

because it will be the 5th homework. The program will copy your �le into the hwk5 subdirectory

/data/biocs/b/student.accounts/cs335_sw/hwks/hwk5/

and if it is successful, it will display the message, �File ... successfully submitted.�

You will not be able to read this �le, nor will anyone else except for me. But you can double-check that the
command succeeded by typing the command

ls -l /data/biocs/b/student.accounts/cs335_sw/hwks/hwk5

and making sure you see a non-empty �le there.

If you put a solution there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date. You cannot resubmit the program after the due date.

1I have scripts that process your submissions automatically and misnamed �les force me to manually override them.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

	1 Overview
	2 Objectives
	3 Phase 1 Requirements
	4 Programming Requirements
	5 Programming Rules
	6 Grading Rubric
	7 Submitting the Assignment

