
CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

Programming Project 2: Processing MTA Subway Data: Revised

1 Overview

This is a minor revision of the original assignment. There is one more command, some small changes to

the SubwaySystem class, and more suggestions and advice on how to develop this project. Changed sections

are marked with [Changed].

The dataset for this project consists of (almost) all entrances and exits to the stations of the New York
City Transit Authority. This dataset is not part of the New York City OpenData project, but is instead
maintained and provided by New York State's Open NY Initiative . The terms �subway entrance� and
�subway exit� respectively mean an entrance or exit to any station, whether it is above or below the ground.
I will henceforth use the general term portal to mean either an exit or an entrance. The dataset has a
row for every distinct portal. Perhaps counter-intuitively, if an elevator, an escalator, and a staircase are
adjacent to each other, they will each have their own distinct row and be treated as separate portals.

Your program will begin by reading and storing the rows of data, which is contained in a csv �le whose name
is the �rst command-line argument to the program. It will then process a sequence of queries about that
data. The queries will be read from a �le whose pathname is given as the second command-line argument
to the program.

This particular dataset is relatively small - only 1839 rows. Your project will read the csv �le and store each
row into an element of an array (or vector). It will not store all of the columns of the rows; details about this
appear below. As it reads the rows and stores them, it will do some preliminary processing. After the data
is stored in memory, the program will process various queries about the dataset. Remember that �elds can
contain embedded commas. (Fields can contain commas if they are within quoted strings, e.g., �Brooklyn,
New York� is a single �eld.)

There is so much information in this data set that many interesting queries are possible. Unfortunately, there
is not enough time to create a very robust and useful program to ask the most interesting types of questions,
but in this assignment you will get a taste of what can be done with this type of data. In particular, you will
design a program that determines which entrances are part of the same stations, which stations are transfer
points, and which stations and/or trains are closest to a given GPS location. As you will soon see, solving
these problems will require using hash tables, and disjoint set representations.

2 Objectives

This project is designed with a few objectives in mind:

• to give you more experience working with real, large, open data sets.

• to give you experience programming the on-line disjoint set problem.

• to give you experience creating a very simple hash table.

• to give you a problem that has practical application and that can be extended to become a useful
application.

3 The Data Set

The data set in its original form is found at NYC Transit Subway Entrance And Exit Data. I have cleaned
this data set, removed the header line, and added another column to it. You should not attempt to work
with the original data, but you may want to inspect it on-line. This section describes the data set after my
revisions to it.

Each row has 33 separate columns, not all of which have data in them. The information that is included
includes items like the entrance's spatial location in GPS coordinates, the subway lines that are accessible

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://data.ny.gov/Transportation/NYC-Transit-Subway-Entrance-And-Exit-Data/i9wp-a4ja
https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

from that entrance, the division (e.g. BMT, IRT, IND), the line (e.g. 4th Avenue), the station name, and
the cross streets of the entrance (exit) and which compass direction it is at that intersection (e.g. Lexington
Avenue and 63rd Street NW corner). It also has the access type (stairs, elevator, etc), whether there are
vending machines, and so on.

Type Name Description
string division IND, IRT, BMT

string line Name for route, such as "Sixth Avenue", or "Lexington
Ave"

string station_name O�cial name of station on that line
double station_latitude Latitude and longitude of station that the
double station_longitude portal accesses
string route1 Each of the route �elds has a single train designator such

as A,B,C,... or 1,2,3,.., including the two-letter
designators, FS and GS.
The routes are the trains that are accessed at that portal.

string route2
string route3
string route4
string route5
string route6
string route7
string route8
string route9
string route10
string route11
string entrance_type Stair, elevator, escalator, etc
string entry YES or NO
string exit_only YES or empty string
string vending YES or NO
string sta�ng FULL or NONE or PART or "Spc Ev"
string sta�_hours string describing hours and days at which it is open
string ada TRUE or FALSE
string ada_notes string providing more details about ADA compliance
string free_crossover TRUE or FALSE (whether one can switch directions on

lines)
string north_south_street Name of north-south street
string east_west_street Name of east-west street
string corner which corner: NW, SW, NE, SE

int id 1 or 2, in case the rest of the location information is
duplicated

double entrance_latitude Latitude and longitude of the portal
double entrance_longitude
GPS station_location The station's location in the form (lat, long)
GPS entrance_location The portal's location in the form (lat, long)

The data dictionary lists the �elds in the order in which they occur in the csv �le.

4 Subway Portals, Subway Stations, and Routes

4.1 Stations and Their Connections

Anyone who uses the New York City subway system knows that there is some ambiguity in the meaning of
the term �subway station�. For example, the 51st Street station of the 6 line is connected to the Lexington
Avenue station of the E-M line. Is this one station or two? In the data set, they are separate stations.

There is a natural equivalence relation on subway stations:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

• Two stations are equivalent if there is a free transfer between them without having to exit and re-enter
(as is the case for the F train at 63rd Street and the 4-5-6 at 59th Street.) This is re�exive, symmetric
(to the best of my knowledge), and transitive.

One objective of your program is to form the equivalence classes of the subway stations in the data set. The
set of all stations in an equivalence class based on the preceding relation will be called a disjoint station
set or a station set for short when the meaning is clear. Your program will use a heuristic to decide
whether two stations are equivalent: it will call them equivalent if they have the exact same set of routes
and they are �su�ciently close� to each other geographically.

There is no explicit column in the dataset that tells us whether two stations are connected. Therefore, we
must use a heuristic rule to determine this. The rule we shall use is the following:

De�nition 1. Two subway stations S1 and S2 are connected if either

• the set of routes for each is identical, and

• the distance between them is at most 0.28 kilometers.

or there is a third station S0 such that S1 is connected to S0 and S2 is connected to S0.

The distance constraint is based on the lengths of trains and the historical minimum distance between non-
equivalent stations. With this de�nition, the dataset can be used to construct the collection of disjoint
station sets.

4.2 Portals and Connectivity

Given any pair of subway portals, either they are part of the same subway station or they are not. When
two portals are part of the same station, we say they are connected . Otherwise they are disjoint . A
moment's thought should convince you that connectivity is symmetric, re�exive, and transitive, and hence,
an equivalence relation.

The data set provides the name of the station to which a portal belongs. It is the third �eld of the row.
If two portals have the same third �eld, then they are part of the same station and thus equivalent. But
the equivalence class is larger than this, because if two stations are equivalent by De�nition 1 above, then
all portals for each of the equivalent stations are equivalent. For example, if entrances A and B are part of
station X, and entrances C and D are part of station Y, and we discover that X and Y are equivalent by
De�nition 1, then A, B, C, and D are all equivalent - they all give access to the exact same set of routes in
the small geographic vicinity of the two stations.

This shows that the set of all portals is a collection of disjoint sets, and this collection will be represented
by a set of parent trees in your program.

4.3 Portal Names

Entrances and exits are not given unique names in the data set, but we can de�ne a unique name as follows.
The concatenation of the north-south-street �eld, the east-west-street �eld, the corner �eld, and the ID �eld,
with all spaces squeezed so that any white-space is at most one space character, using a comma to separate
the �elds, forms a string that uniquely identi�es the portal.

Example

[Changed] The row containing the �elds

north-south street east-west street corner id

Madison Ave 42nd St NW 2

will be given the portal name �Madison Ave,42nd St,NW,2�.

Being able to give a unique name to each portal means that we can use that name as a key that represents
it uniquely.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

4.4 Routes

A route consists of the set of all stations that service that route. One station may be part of many routes,
and hence routes do not partition the collection of stations into disjoint sets. Although most routes de�ne
a sequence of stations, determined by the order in which a train running on that route visits each station,
some do not because they branch. Therefore, in this project, we do not attempt to order the stations for a
given route, but we will store the stations that are part of a route in a container that represents that route.
A SubwayRoute encapsulates the set of the stations that are part of that route, in no particular order, as
well as the operations that a route should support. I will provide the SubwayRoute class for you.

Note that the data set uses the term �line� as a portion of a route. For example, the �R� is a route that
starts in Brooklyn on the 4th Avenue line, then runs on the Broadway line in Manhattan, then runs on the
Queens Boulevard line in Queens. Do not confuse lines with routes.

4.5 Route Sets

A route set is a set of zero or more routes. At any given subway station, there is a set of routes that
it accesses. Therefore, there is a route set associated with each station and hence each portal. This data
set (which is not as current as it should be) only has 25 distinct routes. Therefore a set of routes can be
represented easily by a 32-bit number, with each unique bit position representing a unique route. We will
use a 64-bit number to represent a route set. This will be described below in more detail.

5 Program Invocation, Usage, and Behavior

The program is invoked from the command line and expects two command line arguments, which specify
respectively (1) the csv �le to be opened for reading and (2) the sequence of user commands to be processed.
If two �les are not speci�ed, it is a usage error and the program must write an appropriate and meaningful
error message onto the standard error stream , after which it must exit. If a �le that is speci�ed does not
exist or cannot be opened for some reason, the program must write an appropriate and meaningful error
message onto the standard error stream and then exit.

Assuming that both �les are opened successfully, the program must read the entire csv �le, line by line,
and process these lines according to the rules speci�ed below. Once the entire csv �le has been read and
processed, the program will read the commands from the command �le and process them one after the other.
These commands are described and explained in Section 5.3 below.

5.1 Case Sensitivity and White Space Sensitivity

The program can treat all names of stations and portals case sensitively . However, it should treat any
sequence of space characters as a single space character. Thus, the following strings refer to the same name:

Nassau St & Frankfort St at SE corner

Nassau St & Frankfort St at SE corner

This is true of names entered as arguments to commands as well. This makes it easier for the user of the
program, but harder for the programmer.

5.2 Processing the Input Data File

The main program must read the input �le, parse its lines, construct a SubwayPortal object for each row,
and make the calls to a SubwaySystem object to insert that object into the collection of parent trees of
subway portals. Each SubwayPortal object represents a single subway portal, i.e., a row of the data set.
Exactly what type of container the SubwaySystem needs for them will be described below. In addition, as
the portal object is read, the route set for that portal should be computed and stored, and the station that
it is part of should be added to the SubwayRoute objects of all routes that it services.

After all of the rows have been read and stored in the appropriate container, the main program should request
the SubwaySystem object to form the equivalence classes of portals and subways stations (using De�nition 1
and the union algorithm.)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

5.3 Processing the Command File

[Changed] After the csv �le has been read, the program enters a command processing loop, in which it
reads commands from the second �le speci�ed on the command line. The syntax of the valid commands
from that �le is as follows. The bold text is the command literal and the italicized text is its parameter
list. All output lists should use the names as they are found in the original �le, not names

whose case has been changed.

Command Description
list_route_stations

route_identifier

Lists the station_names of all subway stations that service the
given route. The route identi�er is case insensitive - either upper
or lower case should identify a route, e.g. �A� and �a� specify the
A route.

list_all_stations Lists the station_names of all subway stations in the entire
subway system.

list_routes portal_name Lists the routes that can be accessed at this portal. Routes
should be printed in the form �route,route,..., route�, where
route is a route id like A, B, 7, FS. portal_name is the unique
string for the portal de�ned in Section 4.3.

list_station_portals

station_name

Lists the names of all subway portals for the given station. The
station name is case sensitive . (NEW)

nearest_portal

latitude longitude

Lists the portal name of the portal that is closest to the point
(latitude , longitude). The two numbers should be checked for
validity - no absolute value greater than 180 degrees is allowed. In
the very unlikely event that two portals are exactly the same
distance from the point, either one can be listed.

nearest_routes

latitude longitude

Lists the route_identi�ers of all subway routes that are closest to
the point (latitude , longitude). There may be more than one
because two or more routes might be at a station that is nearest
to the point.

5.3.1 Distance Between Two Points on Sphere (The Haversine Formula)

The Haversine formula (see https: //en.wikipedia.org/wiki/Haversine_formula) can be used to compute
the approximate distance between two points when they are each de�ned by their latitude and longitude
in degrees. The distance is approximate because (1) the earth is not really a sphere, and (2) numerical
round-o� errors occur. Nonetheless, for points that are no more than ten kilometers apart, the formula is
accurate enough. Given the following notation

d : the distance between the two points (along a great circle of the sphere,

r : the radius of the sphere,

ϕ1, ϕ2: latitude of point 1 and latitude of point 2, in radians

λ1, λ2: longitude of point 1 and longitude of point 2, in radians

the formula is

2r · arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos (ϕ1) cos (ϕ2) sin

2

(
λ2 − λ1

2

))
(1)

You have already seen the code for this, so it is omitted this time.

6 Program Architecture and Algorithms

The program must process the commands e�ciently. This section discusses some of the logical issues,
technical tools, and algorithms that you should use to do this.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://https: //en.wikipedia.org/wiki/Haversine_formula
https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

6.1 Subway Portals, Subway Stations, and Parent Trees

[Changed] The program will use parent trees to represent the collection of disjoint sets of stations. To
do this it needs to create an array of objects that will be used by the union/�nd algorithms. The objects
in this array cannot be simple integers. Instead the objects stored in this array are SubwayStation objects.
The private data in each SubwayStation object will look like this:

private:

int parent_id;

set<string> station_names; // Note change here

list<int> children;

string portal_name;

SubwayPortal portal;

Notes

• Each cell has an integer parent_id that is the index of the cell's parent in the array, or is a negative
number indicating that it is a root.

• The cell also stores a set of the names of the stations, station_names, that the cell represents. A cell
can have more than one station name because when stations are identi�ed by the program as being
connected, their disjoint sets are unioned, and at that point, they become a single set with more than
one name. By doing this, the array cells that are roots of their trees contain the names of all stations
that are part of that set of connected stations. In the earlier version of this assignment, it was a list
of names, but now I suggest a set of names, because you need to avoid duplicates. Your
choice.

• The cell has a list of index values of the children of that cell, children, to make it easy to �nd the
portals and other stations that are part of that disjoint set. This list is useful once all sets have been
formed, and then only for the cells that are the roots of the trees. Initially it should have an empty
list. Remember that the �nd algorithm can reorganize the tree and the list of children can become
stale and invalid. I suggest that you create the lists after all sets are �nalized. It is easy if
you use the find algorithm to do this.

• It has the unique name of the portal that was constructed and stored into that cell, portal_name, and

• it has the data from the portal itself, in portal.

• As each row of the data set is read, a SubwayPortal object is created for that row and stored into
the portal member of the next free cell in the array. Initially it has a parent_id of -1 and the
station_name is copied from the row's data into the list of station names. The list of children is empty.
The portal's unique name is constructed as described in Section 4.3and written into the portal_name
member.

The SubwayPortal class must provide methods that process its data, which must be private. It does not
have to store all of the data from the row, but it must store enough of it to process the commands that come
from the command �le.

A SubwayStationmust implement at least the following interface. You may decide to include other public
and/or private methods.

class SubwayStation

{

public:

/** SubwayStation() is a default constructor

* It should initialize any private members with suiatbel default values.

*/

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

SubwayStation();

/** This is a constructor that creates a SubwayStation object from a portal

* It makes the portal the embedded portal.

*/

SubwayStation(SubwayPortal portal);

/** set_parent() sets the parent id of the station

* @param int [in] the id of the parent

*/

void set_parent(int newparent);

/** add_child() adds a new child to the station's list of children

* @param int [in] the index of the child to add

*/

void add_child(int child);

/** A friend function that determines when two stations are connected

* @param SubwayStation [in] s1

* @param SubwayStation [in] s2

* @return bool true iff s1 and s2 are connected according to rules defined

* in the assignment specification

*/

friend bool connected(SubwayStation s1, SubwayStation s2);

/** add_station_name() adds a new name to station

* @Note: It does not add a name if it is already in the set of names for

* the station.

* @param string [in] newname is name to be added

* @return 1 if name is added and 0 if not

*/

int add_station_name(string newname);

/** names() returns a list of the names of the station as a list of strings

*/

list<string> names() const;

// primary_name() is the first station name in its set of names

string primary_name() const;

// parent_id() is the index in the array of the parent of the station

int parent_id() const;

/** portal_list() returns a list of the ids in the list of the portals in

* this station set

*/

list<int> portal_list() const;

// returns the name of the embedded portal

string portal_name() const;

// returns the portal that is embedded in this station object

void get_portal(SubwayPortal &) const;

private:

int m_parent_id;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

set<string> m_station_names;

list<int> children;

string portal_unique_name;

SubwayPortal portal;

};

After all portals have been stored into the array, the program must run through the array and determine
the connectivity of all portals and stations. It will repeatedly apply the de�nition of connectivity until all
stations that should be connected to each other have been connected. When it is �nished, the only array
entries with negative parent_ids will be those that are the roots of disjoint sets.

6.2 Finding Subway Portals E�ciently

One of the problems the program must solve is how to �nd a particular subway portal e�ciently. Commands
supply portal names or station names, which are strings. The program has to be able to �nd the cells in the
array that contain these particular names. Linear searching through this array is unacceptable.

Instead, the program will use a hash table whose keys are portal names, and whose values are the index
values in the array or vector at which the portal was stored. As each portal is read and stored into the parent
tree array, a pair (portal name, array index) can be inserted into the hash table. When the commands are
processed, the hash table can be accessed to �nd that portal in O(1) time in the array.

6.3 Finding Stations E�ciently

A second hash table can be used for �nding station names e�ciently. This hash table will store station
names and the positions in the array at which these are found. After the connectivity of all stations has been
computed, the array entries with negative parent_ids are those of unique stations. No two such entries will
have the same station name in their station name lists. For each array entry whose parent_id is negative,
and for each name in the station name list in that entry, the pair (station name, array index) can be inserted
into this hash table. When a command refers to a station name, it can be looked up in this hash table and
its array entry found.

6.4 Routes, Bit Masks, and Bit Strings

Bit masks and bit-strings are important tools in computing. In this problem they can simplify the solution
to route set problems.

Given two subway portals, each with its own set of routes that it accesses, how can you quickly decide if
the two sets are identical? Of course you could design a solution that iterates over train routes, and which
would be very ine�cient, but you can also design a solution that uses constant time to solve this problem,
if each set is represented by a bit string, using only bit-wise and/or integer operations

Similarly, given a route identi�er, how can you �nd the set of all stations that service the route, assuming
that this set is not stored for each route? For each station, you would need to check if the route identi�er
is part of the set of routes that it services. This can also be done in constant time if the station has a bit
string and the route has a bit mask, also using nothing but bit-wise operations.

Given that there are at most 26 single letter routes, and 7 single digit routes, and two routes with more than
one character (�FS� and �GS�), a 64-bit integer has more than enough bits to de�ne bit strings to represent
sets of routes. Namely each bit is associated with a speci�c route. If a bit is 1, the route is in the set, and
if 0, it is not. Thus a 64-bit integer can represent a set of routes. Each route is then given a unique route
mask, which is a 64 bit integer that has a 1 bit in the position assigned to that route, and 0 bits everywhere
else.

Example

Suppose that bits 1,2,3, ...7 are assigned to represent the 1,2,3,..,7 routes respectively and that
route_set is an integer storing the route set for some portal. If we want to know whether the 4 route stops

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

at that station, we use the bit mask with a 1 in bit 4 and 0 everywhere else. Call this integer route_mask.
Then route_mask & route_set == 1 if and only if the 4 is at that portal.

Deciding whether two route sets are identical is nothing more than testing two integers for equality with this
strategy.

When a portal row is read, the set of routes in it should be converted to a bit-string. That bit-string is what
you should store in your SubwayPortal object. This way a simple integer represents the trains that can be
accessed there, and it will be easy to check whether a train is at that station using a bit-mask for the train.

The routes are in separate �elds of the row.

6.5 Routes

[Changed] I have written a SubwayRoute class that encapsulates the data and methods for subway routes.
The class interface and bomary object �le are on the server.

6.6 The Subway System Class

[Changed] The main program will rely on a class called the SubwaySystem class to carry out all processing
related to subway portals, stations, and routes. This class must encapsulate the array of parent trees, the
hash tables, and an array of route masks. All of this data must be hidden inside this class. These objects
need not be exposed to the clients. Instead, the SubwaySystem should provide speci�c methods to perform all
operations required by the program, so that the main program's only interaction is with the SubwaySystem.
The methods that the main program will call are in the interface below. You are free to add more private
methods, but you cannot modify the public interface of this class. I will provide this code on the server.

#de f i n e MAX_STATIONS 2048

us ing namespace std ;

c l a s s _SubwaySystem
{
pub l i c :

/∗∗ add_portal () adds the g iven po r t a l to the array o f p o r t a l s
∗ I t a l s o c r e a t e s a hash tab l e entry f o r t h i s po r t a l that po in t s to
∗ i t s l o c a t i o n in the array .
∗ @param SubwayPortal [in] po r t a l : an i n i t i a l i z e d po r t a l
∗ @return i n t 1 i f s u c c e s s f u l , 0 i f po r t a l i s not added .
∗/
i n t add_portal (SubwayPortal po r t a l) ;

/∗∗ l i s t_a l l_ s t a t i o n s () l i s t s a l l subway s t a t i o n names on the g iven stream
∗ @param [inout] ostream out i s an open output stream
∗/

void l i s t_a l l_ s t a t i o n s (ostream & out) const ;

/∗∗ l i s t_a l l_po r t a l s () l i s t s a l l p o r t a l s to a g iven s t a t i o n on given stream
∗ @param [inout] ostream i s an open output stream
∗ @param [in] s t r i n g station_name i s the exact name o f a s ta t i on ,
∗ which must be the name o f the s e t o f po r t a l names . These can
∗ be obta ined from the output o f l i s t_a l l_ s t a t i o n s () .
∗/

void l i s t_a l l_po r t a l s (ostream & out , s t r i n g station_name) const ;

/∗∗ l i s t_s ta t i on s_o f_route () l i s t s a l l s t a t i o n names on the g iven route on
∗ the g iven output stream

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

∗ @param [inout] ostream i s an open output stream
∗ @param [in] route_id route i s the name o f the subway route whose
∗ s t a t i o n s are to be pr in ted onto the stream
∗/

void l i s t_s ta t i ons_o f_route (ostream & out , route_id route) const ;

/∗∗ form_stat ions ()
∗ Note : form_stat ions should be c a l l e d once a f t e r the array o f p o r t a l s
∗ has been crea ted . I t determines which po r t a l s are connected to each
∗ other and forms d i s j o i n t s e t s o f connected s t a t i o n s and po r t a l s .
∗ After a l l s e t s are formed , i t s t o r e s the names o f the s t a t i o n s that
∗ name these s e t s (e . g . , i f parent t r e e s , the ones at the root)
∗ in a hash tab l e f o r s t a t i o n names f o r f a s t a c c e s s .
∗ Fina l ly , i t s e t s an i n t e r n a l f l a g to i nd i c a t e that the s e t s have been
∗ computed .
∗ @return i n t : number o f s e t s c r ea ted
∗/
i n t form_stat ions () ;

/∗∗ get_porta l () s ea r che s f o r a po r t a l whose name equa l s name_to_find
∗ @param s t r i n g [in] name_to_find i s the po r t a l name to look up
∗ @param SubwayPortal & [out] i s f i l l e d with the data from the Porta l
∗ i f i t i s found , or i s an empty Porta l whose name i s ""
∗ @return bool t rue i f anf only i f the po r t a l i s found
∗/

bool get_porta l (s t r i n g name_to_find , SubwayPortal & po r t a l) const ;

/∗∗ neares t_porta l () r e tu rn s a s t r i n g r ep r e s en t a t i on o f the po r t a l that
∗ i s n ea r e s t to the g iven po int
∗ @param double [in] l a t i t u d e o f po int
∗ @param double [in] l ong i tude o f po int
∗ @return s t r i n g porta l ' s name (as de f ined in subway_portal . h)
∗/
s t r i n g neare s t_porta l (double l a t i t ude , double l ong i tude) const ;

/∗∗ neares t_routes () r e tu rn s a s t r i n g r ep r e s en t a t i on o f the route s that
∗ are nea r e s t to the g iven po int
∗ @param double [in] l a t i t u d e o f po int
∗ @param double [in] l ong i tude o f po int
∗ @return s t r i n g r ep r e s en t a t i on o f s e t o f r oute s
∗/
s t r i n g neares t_routes (double l a t i t ude , double l ong i tude) const ;

} ;

6.7 The Main Program and Command Processing

I will do as I did in the �rst project and provide a main program in binary. It will handle all details
of processing the command line, and parsing the command �le. The main.o that I supply depends on
the SubwayPortal class whose interface I put on the server in the same directory. This means that your

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

SubwayPortal should contain the same interface. In fact all it needs are the two constructors, not more, so
as long as you name it SubwayPortal and provide the two constructors, it will build and link correctly.

You are free to create your own for testing your code, but your program will be built with the one I supply.
The main program is on the server.

7 Required Files

Regardless of how you de�ne the class interfaces for your classes, each class must be represented by a separate
pair of �les, its header �le and its implementation �le. Minimally, this implies that your program would
need to contain the following �les, assuming they are named in the obvious way:

subway_portal.h

subway_portal.cpp

subway_station.h

subway_station.cpp

subway_system.h

subway_system.cpp

README

Makefile

as well as the subway_route.h and binaries that I provided.

The README �le must contain a running log of your progress and changes and thoughts and possibly frus-
trations during this project, or your �eureka� moments. It can also contain documentation of the program.
There is no hard rule about it. I will provide a Make�le that can be used regardless of how you name the
�les.

8 Testing Your Program

You should make sure that you test the program on a much smaller data set for which you can determine
the correct output manually. You should create your own small test �les for that purpose. (Feel free to share
those with other students on Piazza.)

You should make sure that your program's results are consistent with what is described in this speci�cation
by running the program on carefully designed test inputs and examining the outputs produced to make sure
they are correct.

9 Programming Rules

Your program must conform to the programming rules described in the Programming Rules document
on the course website. It is to be your work and your work alone.

10 Grading Rubric

The program will be graded based on the following rubric, based on 100 points.

• A program that cannot run because it fails to compile or link on a cslab host receives only 20%. This
20% will be assessed using the rest of the rubric below.

• Meeting the functional requirements of the assignment: 50%

• Performance and Design. These are inseparable in this assignment. It includes e�cient solutions to
the problems as well as choices of algorithms, data structures, modularity, organization: 25%

• Documentation: 20%

• Style and proper naming: 5%

This implies that a program that does not compile on a cslab host cannot receive more than 20 points.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Project 2: Processing MTA Subway Data: Revised

Prof. Stewart Weiss

11 Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on May 7, 2019. Create a directory
named named username _project2.2 where username is to be replaced by your CS Department network
login name. Put all project-related source-code �les and the README and Makefile into that directory. Do
not place any executable �les, data �les, or object �les into this directory. You will lose 5%
for each �le that does not belong there, and you will lose 5% if you do not name the directory
correctly1.

Next, create a zip archive for this directory by running the zip command

zip -r username_project2.2.zip ./username_project2.2

This will compress all of your �les into the �le named username_project2.2.zip. Do not use the tar
compress utility. If you do not zip the directory correctly so that all �les, when extracted with the command
unzip username_project2.2.zip, are not in a properly named directory, your program will lose 5%.

The submit command that you will use is submit_cs335_hwk. It requires two arguments: the number of
the assignment and the pathname of your �le. Thus, if your �le is named username_project2.2.zip and
it is in your current working directory you would type,

submit_cs335_hwk 6 username_project3.zip

since this will be the sixth assignment. The program will copy your �le into the hwk6 subdirectory

/data/biocs/b/student.accounts/cs335_sw/hwks/hwk6/

and if it is successful, it will display the message, �File ... successfully submitted.�

You will not be able to read this �le, nor will anyone else except for me. But you can double-check that the
command succeeded by typing the command

ls -l /data/biocs/b/student.accounts/cs335_sw/hwks/hwk6

and making sure you see a non-empty �le there.

If you put a solution there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date. You cannot resubmit the program after the due date.

1I have scripts that process your submissions automatically and misnamed �les force me to manually override them.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

https://creativecommons.org/licenses/by-sa/4.0/

	1 Overview
	2 Objectives
	3 The Data Set
	4 Subway Portals, Subway Stations, and Routes
	4.1 Stations and Their Connections
	4.2 Portals and Connectivity
	4.3 Portal Names
	4.4 Routes
	4.5 Route Sets

	5 Program Invocation, Usage, and Behavior
	5.1 Case Sensitivity and White Space Sensitivity
	5.2 Processing the Input Data File
	5.3 Processing the Command File
	5.3.1 Distance Between Two Points on Sphere (The Haversine Formula)

	6 Program Architecture and Algorithms
	6.1 Subway Portals, Subway Stations, and Parent Trees
	6.2 Finding Subway Portals Efficiently
	6.3 Finding Stations Efficiently
	6.4 Routes, Bit Masks, and Bit Strings
	6.5 Routes
	6.6 The Subway System Class
	6.7 The Main Program and Command Processing

	7 Required Files
	8 Testing Your Program
	9 Programming Rules
	10 Grading Rubric
	11 Submitting the Assignment

