Solutions

1. An AVL tree contains 30 nodes. What is the maximum height that it could be?

You need to compute the $\mathrm{S}(\mathrm{h})$ function until you find an h for which $S(h) \leq 30<S(h+1)$. Then it is this value of h. A simple table works best, as I showed in class:

h	0	1	2	3	4	5	6
$\mathrm{~S}(\mathrm{~h})$	1	2	4	7	12	20	33

This shows that a tree of height 6 must have at least 33 nodes, so a tree with 30 nodes is at most height 5 .
2. The values $60,45,85,65,55,30,35,70$ are inserted into an initially empty, unbalanced binary search tree. Draw the final tree in the space below. This is straightforward:

3. The initial tree:

The tree after the deletion of node 30 is below. There were two rotations, one at 40 after deleting 30 , then one at the root.

