和讚

Chapter 10 Important Points

This is a summary of the parts of Chapter 10 that you should understand and be able to explain. In addition you should be able to solve problems related to them.

- 1. Demand paging
 - (a) How it facilitates sharing
 - (b) How it provides protection
 - (c) Effect of page size on
 - i. Fragmentation
 - ii. Page table size
 - iii. $\rm I/O$ overhead
 - iv. Number of page faults
 - v. Locality
 - (d) Prepaging
- 2. Page faults
 - (a) Valid/invalid bit to determine
 - (b) How they are handled detailed steps
 - (c) How they affect performance
 - i. Instruction restart
 - ii. Effective access time calculations
- 3. Copy-on-write
- 4. Page replacement basic steps independent of algorithm
- 5. FIFO page replacement
 - (a) Belady's anomaly
- 6. Optimal page replacement
- 7. Least Recently Used page replacement
 - (a) approximations :
 - i. Least frequently used
 - ii. Most frequently used
- 8. Second chance stack algorithms
 - (a) With just reference bit
 - (b) With reference and modified bit
- 9. Stack algorithm definition of
- 10. Global versus local replacement
- 11. Page buffering
- 12. Allocation of pages to processes

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

- 13. Principle of locality
- 14. Thrashing
- 15. Working set
 - (a) Definition
 - (b) How implemented
 - (c) Page fault frequency as an approximation
- 16. TLB Reach and working set
- 17. Allocating kernel memory
 - (a) Buddy system
 - (b) Slab allocation
- 18. Effect of program loop structures on page fault rate