
Silberschatz, Galvin and Gagne ©2018Operating System Concepts– 10th Edition

Appendix C: FreeBSD

c.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Module C: The FreeBSD System

 UNIX History
 Design Principles
 Programmer Interface
 User Interface
 Process Management
 Memory Management
 File System
 I/O System
 Interprocess Communication

c.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

UNIX History

 First developed in 1969 by Ken Thompson and Dennis Ritchie of the
Research Group at Bell Laboratories; incorporated features of other
operating systems, especially MULTICS

 The third version was written in C, which was developed at Bell Labs
specifically to support UNIX

 The most influential of the non-Bell Labs and non-AT&T UNIX
development groups — University of California at Berkeley (Berkeley
Software Distributions - BSD)
 4BSD UNIX resulted from DARPA funding to develop a standard

UNIX system for government use
 Developed for the VAX, 4.3BSD is one of the most influential

versions, and has been ported to many other platforms
 Several standardization projects seek to consolidate the variant

flavors of UNIX leading to one programming interface to UNIX

c.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

History of UNIX Versions

c.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Early Advantages of UNIX

 Written in a high-level language
 Distributed in source form
 Provided powerful operating-system primitives on an inexpensive

platform
 Small size, modular, clean design

c.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

UNIX Design Principles

 Designed to be a time-sharing system
 Has a simple standard user interface (shell) that can be replaced
 File system with multilevel tree-structured directories
 Files are supported by the kernel as unstructured sequences of bytes
 Supports multiple processes; a process can easily create new

processes
 High priority given to making system interactive, and providing facilities

for program development

c.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Programmer Interface

 Kernel: everything below the system-call interface and above the
physical hardware
 Provides file system, CPU scheduling, memory management,

and other OS functions through system calls
 Systems programs: use the kernel-supported system calls to

provide useful functions, such as compilation and file manipulation

Like most computer systems, UNIX consists of two separable parts:

c.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

4.4BSD Layer Structure

c.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Calls

 System calls define the programmer interface to UNIX
 The set of systems programs commonly available defines the user

interface
 The programmer and user interface define the context that the kernel

must support
 Roughly three categories of system calls in UNIX

 File manipulation (same system calls also support device
manipulation)

 Process control
 Information manipulation

c.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File Manipulation

 A file is a sequence of bytes; the kernel does not impose a structure
on files

 Files are organized in tree-structured directories
 Directories are files that contain information on how to find other files
 Path name: identifies a file by specifying a path through the directory

structure to the file
 Absolute path names start at root of file system
 Relative path names start at the current directory

 System calls for basic file manipulation: create, open, read,
write, close, unlink, trunc

c.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Typical UNIX Directory Structure

c.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Control

 A process is a program in execution.
 Processes are identified by their process identifier, an integer
 Process control system calls

 fork creates a new process
 execve is used after a fork to replace on of the two processes’s

virtual memory space with a new program
 exit terminates a process
 A parent may wait for a child process to terminate; wait

provides the process id of a terminated child so that the parent
can tell which child terminated

 wait3 allows the parent to collect performance statistics about
the child

 A zombie process results when the parent of a defunct child process
exits before the terminated child.

c.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Illustration of Process Control Calls

c.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Control (Cont.)

 Processes communicate via pipes; queues of bytes between two
processes that are accessed by a file descriptor

 All user processes are descendants of one original process, init

 init forks a getty process: initializes terminal line parameters and
passes the user’s login name to login
 login sets the numeric user identifier of the process to that of

the user
 executes a shell which forks subprocesses for user commands

c.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Control (Cont.)

 setuid bit sets the effective user identifier of the process to the user
identifier of the owner of the file, and leaves the real user identifier as
it was

 setuid scheme allows certain processes to have more than ordinary
privileges while still being executable by ordinary users

c.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signals

 Facility for handling exceptional conditions similar to software
interrupts

 The interrupt signal, SIGINT, is used to stop a command before that
command completes (usually produced by ^C)

 Signal use has expanded beyond dealing with exceptional events
 Start and stop subprocesses on demand
 SIGWINCH informs a process that the window in which output is

being displayed has changed size
 Deliver urgent data from network connections

c.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Groups

 Set of related processes that cooperate to accomplish a common task

 Only one process group may use a terminal device for I/O at any time
 The foreground job has the attention of the user on the terminal
 Background jobs – nonattached jobs that perform their function

without user interaction

 Access to the terminal is controlled by process group signals

c.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Groups (Cont.)

 Each job inherits a controlling terminal from its parent
 If the process group of the controlling terminal matches the group

of a process, that process is in the foreground
 SIGTTIN or SIGTTOU freezes a background process that attempts

to perform I/O; if the user foregrounds that process, SIGCONT
indicates that the process can now perform I/O

 SIGSTOP freezes a foreground process

c.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Information Manipulation

 System calls to set and return an interval timer:
getitmer/setitmer

 Calls to set and return the current time:
gettimeofday/settimeofday

 Processes can ask for
 their process identifier: getpid
 their group identifier: getgid
 the name of the machine on which they are executing:

gethostname

c.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Library Routines

 The system-call interface to UNIX is supported and augmented by a
large collection of library routines

 Header files provide the definition of complex data structures used in
system calls

 Additional library support is provided for mathematical functions,
network access, data conversion, etc.

c.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User Interface

 Programmers and users mainly deal with already existing systems
programs: the needed system calls are embedded within the program
and do not need to be obvious to the user.

 The most common systems programs are file or directory oriented
 Directory: mkdir, rmdir, cd, pwd
 File: ls, cp, mv, rm

 Other programs relate to editors (e.g., emacs, vi) text formatters
(e.g., troff, TEX), and other activities

c.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shells and Commands

 Shell – the user process which executes programs (also called
command interpreter)

 Called a shell, because it surrounds the kernel

 The shell indicates its readiness to accept another command by
typing a prompt, and the user types a command on a single line

 A typical command is an executable binary object file

 The shell travels through the search path to find the command file,
which is then loaded and executed

 The directories /bin and /usr/bin are almost always in the search
path

c.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shells and Commands (Cont.)

 Typical search path on a BSD system:

(./home/prof/avi/bin /usr/local/bin /usr/ucb/bin /usr/bin)

 The shell usually suspends its own execution until the command
completes

c.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Standard I/O

 Most processes expect three file descriptors to be open when they
start:
 standard input – program can read what the user types
 standard output – program can send output to user’s screen
 standard error – error output

 Most programs can also accept a file (rather than a terminal) for
standard input and standard output

 The common shells have a simple syntax for changing what files are
open for the standard I/O streams of a process — I/O redirection

c.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Standard I/O Redirection

c.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pipelines, Filters, and Shell Scripts

 Can coalesce individual commands via a vertical bar that tells the
shell to pass the previous command’s output as input to the following
command

% ls | pr | lpr

 Filter – a command such as pr that passes its standard input to its
standard output, performing some processing on it

 Writing a new shell with a different syntax and semantics would
change the user view, but not change the kernel or programmer
interface

 X Window System is a widely accepted iconic interface for UNIX

c.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Management

 Representation of processes is a major design problem for operating
system

 UNIX is distinct from other systems in that multiple processes can be
created and manipulated with ease

 These processes are represented in UNIX by various control blocks
 Control blocks associated with a process are stored in the kernel
 Information in these control blocks is used by the kernel for

process control and CPU scheduling

c.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Control Blocks

 The most basic data structure associated with processes is the
process structure
 unique process identifier
 scheduling information (e.g., priority)
 pointers to other control blocks

 The virtual address space of a user process is divided into text
(program code), data, and stack segments

 Every process with sharable text has a pointer form its process
structure to a text structure
 always resident in main memory
 records how many processes are using the text segment
 records were the page table for the text segment can be found

on disk when it is swapped

c.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Data Segment

 Most ordinary work is done in user mode; system calls are performed
in system mode

 The system and user phases of a process never execute
simultaneously

 A kernel stack (rather than the user stack) is used for a process
executing in system mode

 The kernel stack and the user structure together compose the system
data segment for the process

c.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Finding parts of a process using
process structure

c.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Allocating a New Process Structure

 Fork allocates a new process structure for the child process, and
copies the user structure
 new page table is constructed
 new main memory is allocated for the data and stack segments of

the child process
 copying the user structure preserves open file descriptors, user

and group identifiers, signal handling, etc.

c.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Allocating a New Process Structure (Cont.)

 vfork does not copy the data and stack to t he new process; the new
process simply shares the page table of the old one
 new user structure and a new process structure are still created
 commonly used by a shell to execute a command and to wait for

its completion

 A parent process uses vfork to produce a child process; the child
uses execve to change its virtual address space, so there is no need
for a copy of the parent

 Using vfork with a large parent process saves CPU time, but can be
dangerous since any memory change occurs in both processes until
execve occurs

 execve creates no new process or user structure; rather the text and
data of the process are replaced

c.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

CPU Scheduling

 Every process has a scheduling priority associated with it; larger
numbers indicate lower priority

 Negative feedback in CPU scheduling makes it difficult for a single
process to take all the CPU time

 Process aging is employed to prevent starvation

 When a process chooses to relinquish the CPU, it goes to sleep on an
event

 When that event occurs, the system process that knows about it calls
wakeup with the address corresponding to the event, and all
processes that had done a sleep on the same address are put in the
ready queue to be run

c.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Management

 The initial memory management schemes were constrained in size by
the relatively small memory resources of the PDP machines on which
UNIX was developed.

 Pre 3BSD system use swapping exclusively to handle memory
contention among processes: If there is too much contention,
processes are swapped out until enough memory is available

 Allocation of both main memory and swap space is done first-fit

c.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Management (Cont.)

 Sharable text segments do not need to be swapped; results in less
swap traffic and reduces the amount of main memory required for
multiple processes using the same text segment.

 The scheduler process (or swapper) decides which processes to swap
in or out, considering such factors as time idle, time in or out of main
memory, size, etc.

c.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging

 Berkeley UNIX systems depend primarily on paging for memory-
contention management, and depend only secondarily on swapping.

 Demand paging – When a process needs a page and the page is not
there, a page fault tot he kernel occurs, a frame of main memory is
allocated, and the proper disk page is read into the frame.

 A pagedaemon process uses a modified second-chance page-
replacement algorithm to keep enough free frames to support the
executing processes.

 If the scheduler decides that the paging system is overloaded,
processes will be swapped out whole until the overload is relieved.

c.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File System

 The UNIX file system supports two main objects: files and directories.

 Directories are just files with a special format, so the representation of
a file is the basic UNIX concept.

c.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Blocks and Fragments

 Most of the file system is taken up by data blocks

 4.2BSD uses two block sized for files which have no indirect blocks:
 All the blocks of a file are of a large block size (such as 8K), except

the last
 The last block is an appropriate multiple of a smaller fragment size

(i.e., 1024) to fill out the file
 Thus, a file of size 18,000 bytes would have two 8K blocks and

one 2K fragment (which would not be filled completely)

c.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Blocks and Fragments (Cont.)

 The block and fragment sizes are set during file-system creation
according to the intended use of the file system:
 If many small files are expected, the fragment size should be small
 If repeated transfers of large files are expected, the basic block

size should be large

 The maximum block-to-fragment ratio is 8 : 1; the minimum block size
is 4K (typical choices are 4096 : 512 and 8192 : 1024)

c.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Inodes

 A file is represented by an inode — a record that stores information
about a specific file on the disk

 The inode also contains 15 pointer to the disk blocks containing the
file’s data contents
 First 12 point to direct blocks
 Next three point to indirect blocks

 First indirect block pointer is the address of a single indirect
block — an index block containing the addresses of blocks that
do contain data

 Second is a double-indirect-block pointer, the address of a
block that contains the addresses of blocks that contain pointer
to the actual data blocks.

 A triple indirect pointer is not needed; files with as many as
232 bytes will use only double indirection

c.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Directories

 The inode type field distinguishes between plain files and directories

 Directory entries are of variable length; each entry contains first the
length of the entry, then the file name and the inode number

 The user refers to a file by a path name,whereas the file system uses
the inode as its definition of a file
 The kernel has to map the supplied user path name to an inode
 Directories are used for this mapping

c.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Directories (Cont.)

 First determine the starting directory:
 If the first character is “/”, the starting directory is the root directory
 For any other starting character, the starting directory is the current

directory

 The search process continues until the end of the path name is
reached and the desired inode is returned

 Once the inode is found, a file structure is allocated to point to the
inode

 4.3BSD improved file system performance by adding a directory name
cache to hold recent directory-to-inode translations

c.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mapping of a File Descriptor to an Inode

 System calls that refer to open files indicate the file is passing a file
descriptor as an argument

 The file descriptor is used by the kernel to index a table of open files
for the current process

 Each entry of the table contains a pointer to a file structure

 This file structure in turn points to the inode

 Since the open file table has a fixed length which is only setable at
boot time, there is a fixed limit on the number of concurrently open files
in a system

c.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File-System Control Blocks

c.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Disk Structures

 The one file system that a user ordinarily sees may actually consist of
several physical file systems, each on a different device

 Partitioning a physical device into multiple file systems has several
benefits
 Different file systems can support different uses
 Reliability is improved
 Can improve efficiency by varying file-system parameters
 Prevents one program form using all available space for a large

file
 Speeds up searches on backup tapes and restoring partitions

from tape

c.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Disk Structures (Cont.)

 The root file system is always available on a drive

 Other file systems may be mounted — i.e., integrated into the
directory hierarchy of the root file system

 The following figure illustrates how a directory structure is partitioned
into file systems, which are mapped onto logical devices, which are
partitions of physical devices

c.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mapping File System to Physical Devices

c.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementations

 The user interface to the file system is simple and well defined,
allowing the implementation of the file system itself to be changed
without significant effect on the user

 For Version 7, the size of inodes doubled, the maximum file and file
system sized increased, and the details of free-list handling and
superblock information changed

 In 4.0BSD, the size of blocks used in the file system was increased
form 512 bytes to 1024 bytes — increased internal fragmentation, but
doubled throughput

 4.2BSD added the Berkeley Fast File System, which increased speed,
and included new features
 New directory system calls
 truncate calls
 Fast File System found in most implementations of UNIX

c.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Layout and Allocation Policy

 The kernel uses a <logical device number, inode number> pair to
identify a file
 The logical device number defines the file system involved
 The inodes in the file system are numbered in sequence

 4.3BSD introduced the cylinder group — allows localization of the
blocks in a file
 Each cylinder group occupies one or more consecutive cylinders of

the disk, so that disk accesses within the cylinder group require
minimal disk head movement

 Every cylinder group has a superblock, a cylinder block, an array of
inodes, and some data blocks

c.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

4.3BSD Cylinder Group

c.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O System

 The I/O system hides the peculiarities of I/O devices from the bulk of
the kernel

 Consists of a buffer caching system, general device driver code, and
drivers for specific hardware devices

 Only the device driver knows the peculiarities of a specific device

c.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

4.3 BSD Kernel I/O Structure

c.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Block Buffer Cache

 Consist of buffer headers, each of which can point to a piece of
physical memory, as well as to a device number and a block number
on the device.

 The buffer headers for blocks not currently in use are kept in several
linked lists:
 Buffers recently used, linked in LRU order (LRU list)
 Buffers not recently used, or without valid contents (AGE list)
 EMPTY buffers with no associated physical memory

 When a block is wanted from a device, the cache is searched.

 If the block is found it is used, and no I/O transfer is necessary.

 If it is not found, a buffer is chosen from the AGE list, or the LRU list if
AGE is empty.

c.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Block Buffer Cache (Cont.)

 Buffer cache size effects system performance; if it is large enough, the
percentage of cache hits can be high and the number of actual I/O
transfers low.

 Data written to a disk file are buffered in the cache, and the disk driver
sorts its output queue according to disk address — these actions allow
the disk driver to minimize disk head seeks and to write data at times
optimized for disk rotation.

c.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Raw Device Interfaces

 Almost every block device has a character interface, or raw device
interface — unlike the block interface, it bypasses the block buffer
cache.

 Each disk driver maintains a queue of pending transfers.

 Each record in the queue specifies:
 whether it is a read or a write
 a main memory address for the transfer
 a device address for the transfer
 a transfer size

 It is simple to map the information from a block buffer to what is
required for this queue.

c.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

C-Lists

 Terminal drivers use a character buffering system which involves
keeping small blocks of characters in linked lists.

 A write system call to a terminal enqueues characters on a list for
the device. An initial transfer is started, and interrupts cause
dequeueing of characters and further transfers.

 Input is similarly interrupt driven

 It is also possible to have the device driver bypass the canonical
queue and return characters directly form the raw queue — raw mode
(used by full-screen editors and other programs that need to react to
every keystroke).

c.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interprocess Communication

 The pipe is the IPC mechanism most characteristic of UNIX
 Permits a reliable unidirectional byte stream between two

processes
 A benefit of pipes small size is that pipe data are seldom written to

disk; they usually are kept in memory by the normal block buffer
cache

 In 4.3BSD, pipes are implemented as a special case of the socket
mechanism which provides a general interface not only to facilities
such as pipes, which are local to one machine, but also to networking
facilities.

 The socket mechanism can be used by unrelated processes.

c.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Sockets

 A socket is an endpont of communication.

 An in-use socket it usually bound with an address; the nature of the
address depends on the communication domain of the socket.

 A characteristic property of a domain is that processes communication
in the same domain use the same address format.

 A single socket can communicate in only one domain — the three
domains currently implemented in 4.3BSD are:
 the UNIX domain (AF_UNIX)
 the Internet domain (AF_INET)
 the XEROX Network Service (NS) domain (AF_NS)

c.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Socket Types

 Stream sockets provide reliable, duplex, sequenced data streams.
Supported in Internet domain by the TCP protocol. In UNIX domain,
pipes are implemented as a pair of communicating stream sockets.

 Sequenced packet sockets provide similar data streams, except that
record boundaries are provided
 Used in XEROX AF_NS protocol

 Datagram sockets transfer messages of variable size in either
direction. Supported in Internet domain by UDP protocol.

 Reliably delivered message sockets transfer messages that are
guaranteed to arrive (Currently unsupported).

 Raw sockets allow direct access by processes to the protocols that
support the other socket types; e.g., in the Internet domain, it is
possible to reach TCP, IP beneath that, or a deeper Ethernet protocol
 Useful for developing new protocols

c.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Socket System Calls

 The socket call creates a socket; takes as arguments specifications
of the communication domain, socket type, and protocol to be used
and returns a small integer called a socket descriptor.

 A name is bound to a socket by the bind system call.

 The connect system call is used to initiate a connection.

 A server process uses socket to create a socket and bind to bind
the well-known address of its service to that socket
 Uses listen to tell the kernel that it is ready to accept

connections from clients
 Uses accept to accept individual connections
 Uses fork to produce a new process after the accept to service

the client while the original server process continues to listen for
more connections

c.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Socket System Calls (Cont.)

 The simplest way to terminate a connection and to destroy the
associated socket is to use the close system call on its socket
descriptor.

 The select system call can be used to multiplex data transfers on
several file descriptors and /or socket descriptors.

c.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network Support

 Networking support is one of the most important features in 4.3BSD.

 The socket concept provides the programming mechanism to access
other processes, even across a network.

 Sockets provide an interface to several sets of protocols.

 Almost all current UNIX systems support UUCP.

 4.3BSD supports the DARPA Internet protocols UDP, TCP, IP, and
ICMP on a wide range of Ethernet, token-ring, and ARPANET
interfaces.

 The 4.3BSD networking implementation, and to a certain extent the
socket facility, is more oriented toward the ARPANET Reference
Model (ARM).

c.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Network Reference models and Layering

Silberschatz, Galvin and Gagne ©2018Operating System Concepts– 10th Edition

End of Appendix C

	Appendix C: FreeBSD
	Module C: The FreeBSD System
	UNIX History
	History of UNIX Versions
	Early Advantages of UNIX
	UNIX Design Principles
	Programmer Interface
	4.4BSD Layer Structure
	System Calls
	File Manipulation
	Typical UNIX Directory Structure
	Process Control
	Illustration of Process Control Calls
	Process Control (Cont.)
	Slide 15
	Signals
	Process Groups
	Process Groups (Cont.)
	Information Manipulation
	Library Routines
	User Interface
	Shells and Commands
	Shells and Commands (Cont.)
	Standard I/O
	Standard I/O Redirection
	Pipelines, Filters, and Shell Scripts
	Process Management
	Process Control Blocks
	System Data Segment
	Finding parts of a process using process structure
	Allocating a New Process Structure
	Allocating a New Process Structure (Cont.)
	CPU Scheduling
	Memory Management
	Memory Management (Cont.)
	Paging
	File System
	Blocks and Fragments
	Blocks and Fragments (Cont.)
	Inodes
	Directories
	Directories (Cont.)
	Mapping of a File Descriptor to an Inode
	File-System Control Blocks
	Disk Structures
	Disk Structures (Cont.)
	Mapping File System to Physical Devices
	Implementations
	Layout and Allocation Policy
	4.3BSD Cylinder Group
	I/O System
	4.3 BSD Kernel I/O Structure
	Block Buffer Cache
	Block Buffer Cache (Cont.)
	Raw Device Interfaces
	C-Lists
	Interprocess Communication
	Sockets
	Socket Types
	Socket System Calls
	Socket System Calls (Cont.)
	Network Support
	Network Reference models and Layering
	End of Appendix C

