
Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020Operating System Concepts – 10th Edition

Chapter 3: Processes

3.2Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 3: Processes

 Process Concept
 Process Scheduling
 Operations on Processes
 Interprocess Communication
 IPC in Shared-Memory Systems
 IPC in Message-Passing Systems
 Examples of IPC Systems

3.3Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Objectives

 Identify the separate components of a process and illustrate
how they are represented and scheduled in an operating
system.

 Describe how processes are created and terminated in an
operating system, including developing programs using the
appropriate system calls that perform these operations.

 Describe and contrast inter-process communication using
shared memory and message passing.

 Understand kernel modules that interact with the Linux
operating system.

3.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Concept

 An operating system executes a variety of programs that run as a
process.

 A process is a program in execution.
 Multiple parts in a process image:

 The program code, also called text section
 Current processor state, including program counter, processor

registers, including stack pointer, etc.
 Stack contents, containing temporary data

 Function parameters, return addresses, local variables
 Data section containing global variables
 Heap containing memory dynamically allocated during run time
 Other resources such as open files, command-line arguments,

environment values, ...

3.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file);
process is active -
 Program becomes process when executable file loaded into

memory
 Execution of program started via GUI mouse clicks, command

line entry of its name, etc
 One program can be executed by several processes

 e.g.: compiler, shell (bash), browser, etc.

3.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process in Memory (simplified)

3.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Memory Layout of a C Program

3.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Detailed ELF Memory Layout

3.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process State

 As a process executes, it changes state
 New: The process was just created
 Ready: The process is ready to run but is waiting to be

assigned to a processor
 Running: Instructions are being executed
 Waiting: The process is waiting for some event to occur

and is not able to use the processor
 Terminated: The process has finished execution

3.10Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process State Transition Diagram

 Edges are transitions.

 Their labels are the actions or events that cause these
transitions.

3.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Control Block (PCB)

 Process state – running, waiting, etc
 Program counter – location of instruction to

next execute
 CPU registers – contents of all process-

centric registers
 CPU scheduling information- priorities,

scheduling queue pointers
 Memory-management information – memory

allocated to the process
 Accounting information – CPU used, clock

time elapsed since start, time limits
 I/O status information – I/O devices allocated

to process, list of open files

Information associated with each process (also called task
control block)

3.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

PCB Representation in Linux

Represented by the C structure task_struct, part of which is

pid t_pid; /* process identifier */
long state; /* state of the process */
unsigned int time_slice /* scheduling information */
struct task_struct *parent;/* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files;/* list of open files */
struct mm_struct *mm; /* address space of this process */

3.13Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Scheduling

 There are three levels of scheduling:
 long-term scheduling: decision about which processes

are admitted into system (usually just in batch systems)
 medium-term scheduling: decision about which

processes are memory resident
 short-term scheduling: decision about which memory

resident process gets the CPU next
 Short-term scheduler is also called process scheduler

3.14Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Scheduler

 Objective: Maximize CPU utilization, quickly switch processes
onto CPU core

 Maintains scheduling queues of processes
 Ready queue – set of all processes residing in main

memory, ready and waiting to execute
 Wait queues – set of processes waiting for an event (i.e. I/

O)
 Processes migrate among the various queues

 Scheduler runs most frequently, so it must be very fast

3.15Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Ready and Wait Queues

One ready queue
for each processor

One wait queue for
each device

3.16Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Transitions in Process Scheduling

3.17Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

CPU Switch From Process to Process

A context switch occurs when the CPU
switches from one process to another.

3.18Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Context Switch

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch

 Context of a process represented in the PCB
 Context-switch time is overhead; the system does no useful

work while switching
 The more complex the OS and the PCB the longer the

context switch
 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU
 multiple contexts loaded at once

3.19Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operations on Processes

 System must provide mechanisms for:
 process creation
 process termination

3.20Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Creation

 Parent process create children processes, which, in turn
create other processes, forming a tree of processes

 Generally, process identified and managed via a process
identifier (pid)

 Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

 Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

3.21Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

A Tree of Processes in Linux

3.22Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Creation (Cont.)

 Address space
 Child duplicate of parent
 Child has a program loaded into it

 UNIX examples
 fork() system call creates new process
 exec() system call used after a fork() to replace the

process’ memory space with a new program
 Parent process calls wait() for the child to terminate

3.23Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

C Program Forking Separate Process

3.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Creating a Separate Process via Windows API

3.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Termination

 Process executes last statement and then asks the operating
system to delete it using the exit() system call.
 Returns status data from child to parent (via wait())
 Process’ resources are deallocated by operating system

 Parent may terminate the execution of children processes using
signals. Some reasons for doing so:
 Child has exceeded allocated resources
 Task assigned to child is no longer required
 The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

3.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Termination 2

 Some operating systems do not allow child to exists if its parent has
terminated. If a process terminates, then all its children must also
be terminated.
 cascading termination. All children, grandchildren, etc. are

terminated.
 The termination is initiated by the operating system.

 The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

 pid = wait(&status);

 If no parent waiting (did not invoke wait()) process is a zombie
 If parent terminated without invoking wait , process is an orphan

3.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Android Process Importance Hierarchy

 Mobile operating systems often have to terminate processes to reclaim
system resources such as memory. From most to least important:

o Foreground process
o Visible process
o Service process
o Background process
o Empty process
 Android will begin terminating processes that are least important.

3.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Cooperating Processes

 Two processes can be either independent or cooperating with
respect to each other.

 They are independent if neither can affect or be affected by the
execution of the other process

 They are cooperating if either can affect or be affected by the
execution of the other process.

 Various reasons for processes to cooperate:
 To share information sharing
 To speed up a computation
 To increase modularity of an application

3.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example: Chrome Browser

 Many web browsers ran as single process (some still do)
 If one web site causes trouble, entire browser can hang or crash

 Google Chrome Browser is multiprocess with 3 different types of
processes:
 Browser process manages user interface, disk and network I/O
 Renderer process renders web pages, deals with HTML,

Javascript. A new renderer created for each website opened
 Runs in sandbox restricting disk and network I/O, minimizing

effect of security exploits
 Plug-in process for each type of plug-in

3.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Interprocess Communication

 Cooperating processes need interprocess communication (IPC), a
mechanism that allows them to exchange data.

 Two models of IPC:
 Shared memory
 Message passing

3.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Communications Models

(a) Shared memory. (b) Message passing.

3.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Interprocess Communication – Shared Memory

 An area of memory shared among the processes that wish
to communicate

 With threads (discussed later) sharing memory is easy.
 The communication is under the control of the user

processes, not the operating system.
 Processes do not have access to same memory, so

operating system must provide mechanism to allow them to
create a shared memory region.

 When processes share memory to communicate – grave
danger! They must synchronize otherwise they risk lots of
bad problems (addressed in Chapters 6 and 7).

3.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process
 unbounded-buffer places no practical limit on the size of the

buffer
 bounded-buffer assumes that there is a fixed buffer size

 No buffer means they run in lockstep; as buffer size increases,
less need for synchronizing.

 Examples:
 printer is consumer; word processor is producer
 compiler produces assembler code; assembler consumes it,

producing machine code.
 pipeline:

 grep expr file | sort | uniq

 command to left is producer for command to right of pipe

3.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Bounded-Buffer – Shared-Memory Solution

 Shared data
#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

/* Initialization */

int in = 0;

int out = 0;

 Assumes processes somehow access shared buffer and shared variables in
and out

 This solution uses BUFFER_SIZE-1 elements: treats buffer as a circular queue.
 in == out iff buffer is empty
 (in +1) % BUFFER_SIZE == out iff buffer is full

3.35Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Producer Process – Shared Memory

item next_produced; /* local var in producer */

while (true) {

/* produce an item in next_produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing (full condition) */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE; /* advance in */

}

3.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Consumer Process – Shared Memory

item next_consumed; /* local var in consumer */

while (true) {
while (in == out)

; /* do nothing (empty condition) */
next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next_consumed */

}

 Why is this correct?
 What does “correct” mean?

 No data produced is lost before consumed
 No data produced is consumed more than once
 What else?

3.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Interprocess Communication – Message Passing

 Mechanism for processes to communicate and to synchronize
their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send([destination,] message)
 receive([source,] message)

 The message size is either fixed or variable
 Usually a destination is required by send and usually a source

is required by receive.
 Can be used by processes on remote hosts or on same host,

so is very general.

3.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Message Passing (Cont.)

 If processes P and Q wish to communicate, they need to:
 Establish a communication link between them
 Exchange messages via send/receive

 Implementation issues:
 How are links established?
 Can a link be associated with more than two processes?
 How many links can there be between every pair of communicating

processes?
 What is the capacity of a link?
 Do links have buffering?
 Is the size of a message that the link can accommodate fixed or variable?
 Is a link unidirectional or bi-directional? (Do we need two separate links

for messages from P to Q and from Q to P?)

3.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Message Passing (Cont.)

 Implementation of communication link
 Physical:

 Shared memory
 Hardware bus
 Network

 Logical:
 Direct or indirect naming of links
 Blocking or non-blocking transmission (defined soon)
 Symmetric or asymmetric communication (e.g., send is non-

blocking but receive is blocking)
 Automatic or explicit buffering of link

3.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Direct Communication

 Processes must name each other explicitly:
 send (P, message) – send a message to process P
 receive(Q, message) – receive a message from process Q

 Names are bound at compile time
 Properties of communication link

 Links are established automatically
 A link is associated with exactly one pair of communicating processes
 Between each pair there exists exactly one link
 The link may be unidirectional, but is usually bi-directional
 Easy to implement
 Cannot be used for client/server architectures
 Compile-time binding is very limiting

3.41Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as
ports)
 Each mailbox has a unique id
 Processes can communicate only if they share a mailbox
 send (A, message) – send a message to mailbox A
 receive(A, message) – receive a message from mailbox A

 Mailboxes might be owned and managed by OS, or by processes.
 Properties of communication link

 Link established only if processes share a common mailbox
 A link may be associated with many processes
 Each pair of processes may share several communication links
 Link may be unidirectional or bi-directional

3.42Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Indirect Communication

 Operations
 create a new mailbox (port)
 send and receive messages through mailbox
 destroy a mailbox

 Primitives are defined as:
send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from mailbox A

 If process creates mailbox, it owns it.
 If process creates child processes they can access sometimes:

 P creates A
 P creates child Q
 Q can receive from or send to A

3.43Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Indirect Communication

 Mailbox sharing
 P1, P2, and P3 share mailbox A
 P1, sends; P2 and P3 receive
 Who gets the message?

 Solutions
 Allow a link to be associated with at most two processes
 Allow only one process at a time to execute a receive

operation
 Allow the system to select arbitrarily the receiver.

Sender is notified who the receiver was.
 Many unanswered questions, such as lost messages, faulty

communications, process terminations, scrambled
messages, etc

3.44Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Synchronization

 Message passing may be either blocking or non-blocking
 Blocking is considered synchronous

 Blocking send -- the sender is blocked until the message is
received

 Blocking receive -- the receiver is blocked until a message
is available

 Non-blocking is considered asynchronous
 Non-blocking send -- the sender sends the message and

continues without waiting
 Non-blocking receive -- the receiver receives:

 A valid message, or
 Null message

 Different combinations possible
 If both send and receive are blocking, we have a rendezvous

3.45Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Producer – Message Passing

message next_produced;

while (true) {

/* produce an item in next_produced */

 send(next_produced);
}

3.46Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Consumer– Message Passing

message next_consumed;

while (true) {

receive(next_consumed)

/* consume the item in next_consumed */
 }

3.47Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Buffering

 Queue of messages attached to the link.
 Implemented in one of three ways

1. Zero capacity – no messages are queued on a link.
Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

3.48Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Examples of IPC Systems - POSIX

 POSIX Shared Memory
 Process first creates shared memory segment

shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);

 Also used to open an existing segment
 Set the size of the object

 ftruncate(shm_fd, 4096);
 Use mmap() to memory-map a file pointer to the shared memory

object
 Reading and writing to shared memory is done by using the

pointer returned by mmap().

3.49Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

IPC POSIX Producer

3.50Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

IPC POSIX Consumer

3.51Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Examples of IPC Systems - Mach

 Mach communication is message based
 Even system calls are messages
 Each task gets two ports at creation- Kernel and Notify
 Messages are sent and received using the mach_msg() function
 Ports needed for communication, created via

mach_port_allocate()

 Send and receive are flexible, for example four options if mailbox full:
 Wait indefinitely
 Wait at most n milliseconds
 Return immediately
 Temporarily cache a message

3.52Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Mach Messages

#include<mach/mach.h>

struct message {
mach_msg_header_t header;
int data;

};

mach port t client;
mach port t server;

3.53Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Mach Message Passing - Client

3.54Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Mach Message Passing - Server

3.55Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pipes

 A pipe acts as a conduit allowing two processes to communicate
 Issues:

 Is communication unidirectional or bidirectional?
 In the case of two-way communication, is it half or full-duplex?
 Must there exist a relationship (i.e., parent-child) between the

communicating processes?
 Can the pipes be used over a network?

 Ordinary pipes – cannot be accessed from outside the process
that created it. Typically, a parent process creates a pipe and
uses it to communicate with a child process that it created.

 Named pipes – can be accessed without a parent-child
relationship.

3.56Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-consumer
style

 Producer writes to one end (the write-end of the pipe)
 Consumer reads from the other end (the read-end of the pipe)
 Ordinary pipes are therefore unidirectional
 Require parent-child relationship between communicating processes

 Windows calls these anonymous pipes

3.57Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Named Pipes

 Named Pipes are more powerful than ordinary pipes
 Communication is bidirectional
 No parent-child relationship is necessary between the

communicating processes
 Several processes can use the named pipe for communication
 Provided on both UNIX and Windows systems

3.58Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Communications in Client-Server Systems

 Sockets
 Remote Procedure Calls

3.59Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port – a number included at
start of message packet to differentiate network services on a
host

 The socket 161.25.19.8:1625 refers to port 1625 on host
161.25.19.8

 Communication consists between a pair of sockets

 All ports below 1024 are well known, used for standard
services

 Special IP address 127.0.0.1 (loopback) to refer to system on
which process is running

3.60Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Socket Communication

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020Operating System Concepts – 10th Edition

End of Chapter 3

	Chapter 3: Processes
	Synopsis
	Objectives
	Process Concept
	Process Concept (Cont.)
	Process in Memory
	Memory Layout of a C Program
	Detailed Memory Layout Using ELF
	Process State
	Diagram of Process State
	Process Control Block (PCB)
	Process Representation in Linux
	Scheduling
	Process Scheduler
	Ready and Wait Queues
	Transitions in Process Scheduling
	CPU Switch From Process to Process
	Context Switch
	Operations on Processes
	Process Creation
	A Tree of Processes in Linux
	Process Creation (Cont.)
	C Program Forking Separate Process
	Creating a Separate Process via Windows API
	Process Termination
	Process Termination 2
	Android Process Importance Hierarchy
	Cooperating Processes
	Example: Chrome Browser
	Interprocess Communication
	Communications Models
	Interprocess Communication – Shared Memory
	Producer-Consumer Problem
	Shared Memory Bounded Buffer
	Producer Process – Shared Memory
	Consumer Process – Shared Memory
	Interprocess Communication – Message Passing
	Message Passing (Cont.)
	Message Passing 3
	Direct Communication
	Indirect Communication
	Indirect Communication 2
	Indirect Communication 3
	Synchronization
	Producer – Message Passing
	Consumer– Message Passing
	Buffering
	Examples of IPC Systems - POSIX
	IPC POSIX Producer
	IPC POSIX Consumer
	Examples of IPC Systems - Mach
	Mach Messages
	Mach Message Passing - Client
	Mach Message Passing - Server
	Pipes
	Ordinary Pipes
	Named Pipes
	Communications in Client-Server Systems
	Sockets
	Socket Communication
	End of Chapter 3

