
Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 4: Threads &
Concurrency

4.2Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 4: Threads

 Overview
 Multi-core Programming
 Multi-threading Models
 Thread Libraries
 Implicit Threading
 Threading Issues
 Operating System Examples

4.3Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Objectives

 Identify the basic components of a thread, and contrast threads
and processes

 Describe the benefits and challenges of designing multi-
threaded applications

 Illustrate different approaches to implicit threading, including
thread pools and fork-join

 Describe how the Linux operating system represents threads
 Explore multi-threaded applications using the Pthreads, Java,

and Windows threading APIs

4.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Motivation

 Kernels are generally multi-threaded
 Most modern applications are multi-threaded
 Whereas cooperating processes are independent, cooperating

threads run within the same process (think application)
 Multiple functions or tasks within an application can be

implemented by separate threads. Example decomposition:
 A thread to update display
 A thread to fetch data from a database
 A thread to run a tool such as a spell-checker
 A thread to respond to a network request

 Process creation is costly and slow, whereas thread creation
is light-weight

 Proper threading can simplify code, increase efficiency

4.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Single versus Multi-threaded Processes

Each thread has its own register set, stack, and PC.

4.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-threaded Server Architecture

1) client sends request to server;
2) server creates a thread to process the request, and
3) immediately returns to listening for the next request

from a client in the same main thread.

4.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Benefits of Threads

 Responsiveness – may allow continued execution if part of
process is blocked, or some slow operation in a different thread -
especially important for user interfaces

 Resource Sharing – threads share same address space in single
process, easier than processes using shared memory or message
passing

 Cost – cheaper than process creation, thread switching lower
overhead than context switching

 Scalability – process can take advantage of multi-core
architectures

4.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Concurrency vs. Parallelism

 Two or more sequences of instructions are said to be concurrent if no
matter what order they are executed in relation to each other, the final
result of their combined computation is the same.

 This means that they can be executed simultaneously on different
processors, or interleaved on a single processor in any order, and
whatever outputs they produce will be the same.

 A system with two ore more concurrent processes is called a concurrent
program or a concurrent system.

 Two processes or threads execute in parallel if they execute at the same
time on different processors.

 Parallel programs are those containing instruction sequences that can be
executed in parallel. A parallel program is always a concurrent program,
but a system can have concurrency even though it is not a parallel
program.

4.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

4.10Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-core Programming

 Multi-core or multi-processor systems challenge programmers to
take advantage of hardware, but it is not easy:
 How to decompose a single task into many independent

parallel tasks
 How to load-balance the tasks
 How to split data onto separate cores/processors
 How to identify data dependency and handle synchronization
 How to test and debug parallel programs

4.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-core Programming (cont.)

 Types of inherent parallelism:
 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each
 an image on which the same operation is applied to all

pixels
 a payroll with taxes to be calculated for all individuals
 a set of points to be rotated through same angle in space

 Task parallelism – distributing threads across cores, each
thread performing unique operation
 same data set evaluated by multiple algorithms for some

property (census data analyzed for demographics,
financials, geographic, etc)

4.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Data and Task Parallelism

4.13Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Amdahl’s Law

 In 1967, Gene Amdahl argued that there was an inherent limitation to the amount of speedup
that could be obtained by performing a computation using more processors. His argument is
known as “Amdahl’s Law”. If
 S, 0 <= S <= 1, is the fraction of operations that must be executed serially (in sequence),

and
 N is the number of processing cores, then the speed-up is bounded above:

 Example: if program is 75% parallel / 25% serial, (S=0.25) moving from 1 to 2 cores (N=2)
results in speedup of 1/((1/4) + (3/4)/2)) = 1.6

 As N approaches infinity, speedup approaches 1 / S

Serial portion of an application limits maximum performance gained by adding
additional cores

4.14Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Amdahl’s Law Graphically

4.15Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

User Threads and Kernel Threads

 User threads are supported by user-level libraries
 Three primary user thread libraries:

 POSIX Pthreads
 Windows threads
 Java threads

 Kernel threads are supported directly by the kernel
 Examples – virtually all modern operating systems, including:

 Windows
 Linux
 Mac OS X
 iOS
 Android

4.16Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

User and Kernel Threads

 When threads are provided as user threads, they still must be
mapped onto kernel threads.

 There is not necessarily an equal number of user and kernel
threads.

4.17Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-threading Models

 How to map user threads to kernel threads?
 Three different models:

 Many-to-One: many user-level threads map to single kernel thread

 One-to-One: one user-level thread maps to one kernel thread

 Many-to-Many: many user-level threads map to many kernel threads

4.18Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Many-to-One

 Many user-level threads mapped to single kernel thread.
 Weaknesses:

 One thread blocking causes all to block
 Multiple threads may not run in parallel on multi-core

system because only one may be in kernel at a time
 Few systems currently use this model because modern

systems have many cores which are not utilized well.
 Examples:

 Solaris Green Threads
 GNU Portable Threads

4.19Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

One-to-One

 Each user-level thread maps to one kernel thread
 Creating a user-level thread creates a kernel thread
 More concurrency than many-to-one
 Number of threads per process sometimes restricted due to

overhead:
 Creating a user thread requires creating a kernel thread,

and too many kernel threads can degrade performance of
system.

 Examples
 Windows
 Linux

4.20Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Many-to-Many Model

 Allows many user level threads to be multiplexed onto an
equal or smaller number of kernel threads

 Allows the operating system to create a sufficient number of
kernel threads

 Program can have as many user threads as necessary, and
the corresponding kernel threads can run in parallel on a
multiprocessor. If thread blocks, kernel can schedule a different
thread.

 Windows with the
ThreadFiber package

 Otherwise not very common

4.21Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Two-level Model

 Similar to the many-to-many, except that it allows a user
thread to be bound to a kernel thread.

4.22Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Thread Libraries

 Thread library provides programmer with API for creating
and managing threads

 Two primary ways of implementing
 Library entirely in user space
 Kernel-level library supported by the OS

 Three prevalent libraries: POSIX threads (Pthreads),
Windows, and Java threads.

4.23Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pthreads

 May be provided either as user-level or kernel-level
 A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization
 Specification, not implementation
 API specifies behavior of the thread library, implementation is

up to development of the library
 Common in UNIX operating systems (Linux & Mac OS X)

4.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void* hello_world(void* unused)
{
 printf("The child says, \"Hello world!\"\n");
 pthread_exit(NULL) ;
}

int main(int argc, char *argv[])
{
 pthread_t child_thread;

 /* Create the thread and launch it. */
 if (0 != pthread_create(&child_thread, NULL,
 hello_world, NULL)){
 printf("pthread_create failed.\n");
 exit(1);
 }
 printf("This is the parent thread.\n");
 /* Wait for the child thread to terminate. */
 pthread_join(child_thread, NULL);
 return 0;
}

Pthreads Example 1

4.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pthreads Example 2

4.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pthreads Example 2 (cont)

4.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pthreads Code for Joining 10 Threads

4. 21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition

Pthreads Code for Joining 10 Threads

4.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Windows Multi-threaded C Program

4.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Windows Multi-threaded C Program (Cont.)

4.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Implicit Threading

 Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

 Creation and management of threads done by compilers and
run-time libraries rather than programmers

 Five methods explored
 Thread Pools
 Fork-Join
 OpenMP
 Grand Central Dispatch
 Intel Threading Building Blocks

4.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Thread Pools

 Create a number of threads in a pool where they await work
 Advantages:

 Usually slightly faster to service a request with an existing
thread than create a new thread

 Allows the number of threads in the application(s) to be
bound to the size of the pool

 Separating task to be performed from mechanics of
creating task allows different strategies for running task
 i.e.Tasks could be scheduled to run periodically

 Windows API supports thread pools:

4.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Fork-Join Parallelism

 Multiple threads (tasks) are forked, and then joined.

4.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Fork-Join Parallelism

 General algorithm for fork-join strategy:

4.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Fork-Join Parallelism

4.35Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

OpenMP

 Set of compiler directives and an
API for C, C++, FORTRAN

 Provides support for parallel
programming in shared-memory
environments

 Identifies parallel regions –
blocks of code that can run in
parallel

#pragma omp parallel

Create as many threads as there are
cores

4.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

OpenMP Example

 Run the for loop in parallel

4.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Grand Central Dispatch

 Apple technology for macOS and iOS operating systems
 Extensions to C, C++ and Objective-C languages, API, and run-

time library
 Allows identification of parallel sections
 Manages most of the details of threading
 Block is in “^{ }” :

 ˆ{ printf("I am a block"); }

 Blocks placed in dispatch queue
 Assigned to available thread in thread pool when removed

from queue

4.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Grand Central Dispatch (cont)

 Two types of dispatch queues:
 serial – blocks removed in FIFO order, queue is per process,

called main queue
 Programmers can create additional serial queues within

program
 concurrent – removed in FIFO order but several may be

removed at a time
 Four system wide queues divided by quality of service:
o QOS_CLASS_USER_INTERACTIVE

o QOS_CLASS_USER_INITIATED

o QOS_CLASS_USER_UTILITY

o QOS_CLASS_USER_BACKGROUND

4.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Grand Central Dispatch (3)

 For the Swift language a task is defined as a closure – similar to a block,
minus the caret

 Closures are submitted to the queue using the dispatch_async()
function:

4.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Threading Issues

 Semantics of fork() and exec() system calls
 Signal handling

 Synchronous and asynchronous
 Thread cancellation of target thread

 Asynchronous or deferred
 Thread-local storage
 Scheduler Activations

4.41Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Semantics of fork() and exec()

 Does fork()duplicate only the calling thread or all
threads?
 Some UNIXes have two versions of fork

 exec() usually works as normal – replace the running
process including all threads

4.42Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Signal Handling

 Signals are used in UNIX systems to notify a process that a
particular event has occurred.

 A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

 Every signal has default handler that kernel runs when
handling signal
 User-defined signal handler can override default
 For single-threaded, signal delivered to process

4.43Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Signal Handling (Cont.)

 Where should a signal be delivered for multi-threaded?
 Deliver the signal to the thread to which the signal

applies
 Deliver the signal to every thread in the process
 Deliver the signal to certain threads in the process
 Assign a specific thread to receive all signals for the

process

4.44Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Thread Cancellation

 Terminating a thread before it has finished
 Thread to be canceled is target thread
 Two general approaches:

 Asynchronous cancellation terminates the target thread
immediately

 Deferred cancellation allows the target thread to periodically
check if it should be cancelled

 Pthread code to create and cancel a thread:

4.45Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Thread Cancellation (Cont.)

 Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

 If thread has cancellation disabled, cancellation remains pending
until thread enables it

 Default type is deferred
 Cancellation only occurs when thread reaches cancellation

point
 I.e. pthread_testcancel()
 Then cleanup handler is invoked

 On Linux systems, thread cancellation is handled through signals

4.46Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Thread-Local Storage

 Thread-local storage (TLS) allows each thread to have its
own copy of data

 Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

 Different from local variables
 Local variables visible only during single function

invocation
 TLS visible across function invocations

 Similar to static data
 TLS is unique to each thread

4.47Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Scheduler Activations

 Both M:M and Two-level models require
communication to maintain the appropriate
number of kernel threads allocated to the
application

 Typically use an intermediate data structure
between user and kernel threads – lightweight
process (LWP)
 Appears to be a virtual processor on which

process can schedule user thread to run
 Each LWP attached to kernel thread
 How many LWPs to create?

 Scheduler activations provide upcalls - a
communication mechanism from the kernel to
the upcall handler in the thread library

 This communication allows an application to
maintain the correct number kernel threads

4.48Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Examples

 Windows Threads
 Linux Threads

4.49Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Windows Threads

 Windows API – primary API for Windows applications
 Implements the one-to-one mapping, kernel-level
 Each thread contains

 A thread id
 Register set representing state of processor
 Separate user and kernel stacks for when thread runs in

user mode or kernel mode
 Private data storage area used by run-time libraries and

dynamic link libraries (DLLs)
 The register set, stacks, and private storage area are known as

the context of the thread

4.50Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Windows Threads (Cont.)

 The primary data structures of a thread include:
 ETHREAD (executive thread block) – includes pointer to

process to which thread belongs and to KTHREAD, in
kernel space

 KTHREAD (kernel thread block) – scheduling and
synchronization info, kernel-mode stack, pointer to TEB, in
kernel space

 TEB (thread environment block) – thread id, user-mode
stack, thread-local storage, in user space

4.51Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Windows Threads Data Structures

4.52Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux Threads

 Linux refers to them as tasks rather than threads
 Thread creation is done through clone() system call
 clone() allows a child task to share the address space of the

parent task (process)
 Flags control behavior

 struct task_struct points to process data structures
(shared or unique)

Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

End of Chapter 4

	Chapter 4: Threads & Concurrency
	Chapter 4: Threads
	Objectives
	Motivation
	Single and Multithreaded Processes
	Multithreaded Server Architecture
	Benefits
	Concurrency vs. Parallelism
	Concurrency-Parallelism Visualized
	Multicore Programming
	Multi-Core Programming (cont)
	Data and Task Parallelism
	Amdahl’s Law
	Amdahl's Law Graphically
	User Threads and Kernel Threads
	User and Kernel Threads
	Multithreading Models
	Many-to-One
	One-to-One
	Many-to-Many Model
	Two-level Model
	Thread Libraries
	Pthreads
	PThreads Example 1
	Pthreads Example
	Pthreads Example (cont)
	Pthreads Code for Joining 10 Threads
	Windows Multithreaded C Program
	Windows Multithreaded C Program (Cont.)
	Implicit Threading
	Thread Pools
	Fork-Join Parallelism
	Slide 33
	Fork-Join Parallelism Example
	OpenMP
	OpenMP Example Continued
	Grand Central Dispatch
	Grand Central Dispath (cont)
	Grand Central Dispath (3)
	Threading Issues
	Semantics of fork() and exec()
	Signal Handling
	Signal Handling (Cont.)
	Thread Cancellation
	Thread Cancellation (Cont.)
	Thread-Local Storage
	Scheduler Activations
	Operating System Examples
	Windows Threads
	Windows Threads (Cont.)
	Windows Threads Data Structures
	Linux Threads
	End of Chapter 4

