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Chapter 7:  Synchronization 
Examples
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7: Model Synchronization Problems

 The bounded-buffer, readers-writers, and dining philosophers 
synchronization problems.

 Tools used by Linux  to solve synchronization problems.

  POSIX solutions to  synchronization problems.
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Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization 
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem
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Bounded-Buffer Problem

 n buffers, each can hold one item
 Semaphore mutex initialized to the value 1
 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value n
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Bounded Buffer Problem (Cont.)

 The structure of the producer process

     while (true) { 

          ...
        /* produce an item in next_produced */ 

          ... 

        wait(empty); 

        wait(mutex); 

           ...
        /* add next produced to the buffer */ 

           ... 

        signal(mutex); 

        signal(full); 

     }
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Bounded Buffer Problem (Cont.)

 The structure of the consumer process

     while (true) { 

        wait(full); 

        wait(mutex); 

           ...
        /* remove an item from buffer to next_consumed */ 

           ... 

        signal(mutex); 

        signal(empty); 

           ...
        /* consume the item in next consumed */ 

           ...
     }
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Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers   – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered  – all 
involve some form of priorities

 Shared Data
 Data set
 Semaphore rw_mutex initialized to 1
 Semaphore mutex initialized to 1
 Integer read_count initialized to 0
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Readers-Writers Problem (Cont.)

 The structure of a writer process
        
       while (true) {

          wait(rw_mutex); 

               ...
          /* writing is performed */ 

               ... 

          signal(rw_mutex); 

     }
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Readers-Writers Problem (Cont.)

 The structure of a reader process
       while (true){

    wait(mutex);
        read_count++;
        if (read_count == 1) 

   wait(rw_mutex); 

           signal(mutex); 

               ...
           /* reading is performed */ 

               ... 

           wait(mutex);
           read count--;
           if (read_count == 0) 

           signal(rw_mutex); 

           signal(mutex); 

       }
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Readers-Writers Problem Variations

 First  variation – no reader kept waiting unless writer has 
permission to use shared object

 Second variation – once writer is ready, it writes as soon 
as any existing writer finishes writing

 Both may have starvation leading to even more variations
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Dining Philosophers Problem

 Originally posed by Edsger Dijkstra in 1965 as a tape drive exercise for 
his students, and later formalized by C.A.R. Hoare.

 Five philosophers sit at a round table, and spend their lives alternating 
thinking and eating.

 They each have a bowl of spaghetti in front of them, and five forks are 
between the five bowls.

 They need two forks to eat. They cannot eat with just one.
 Problem has morphed over the years  to bowls of rice and chopsticks.
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Dining Philosophers Problem

 Philosophers are independent – they do not  interact with their 
neighbors. They try to pick up 2 chopsticks one after the other to eat 
from bowl
 Need both chopsticks to eat, then release both when done

 Shared data:
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1
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Dining Philosophers Problem

 Formal Solution Requirements:
 Only one philosopher can hold a chopstick at a time.
 It must be deadlock-free
 It must be impossible for a philosopher to starve waiting for a 

chopstick. 
 It must be possible for more than one philosopher to eat at the 

same time.
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  Dining Philosophers Algorithm

 Solution using semaphores
 The structure of Philosopher i:

while (true){ 

    wait (chopstick[i] );

 wait (chopStick[ (i + 1) % 5] );

  /* eat for awhile */

 signal (chopstick[i] );

 signal (chopstick[ (i + 1) % 5] );

  /* think for awhile */

}

   What is the problem with this algorithm?
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  Dining Philosophers #2

 A deadlock free solution uses an array of state variables and an 
array of semaphores: 

 A philosopher tries to take forks as follows

  

void take_forks(int ph_num)
{
    sem_wait(&mutex);
    state[ph_num] = HUNGRY;
        
    try_to_eat(ph_num);
    signal(mutex);
    wait(S[ph_num]); // wait here if could not eat
    sleep(1);
}

sem_t mutex;
sem_t S[N];
int   state[N]; 
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  Dining Philosophers #2

 Before a philosopher picks up any chopsticks, she checks 
whether her neighbors are holding any with something like this:

 The putting down of forks: 

if (state[i] == HUNGRY && state[(i+1)%5] != EATING 
    && state[(i+4)%5] != EATING)
{
    state[i] = EATING;
    // can eat!!
    signal(S[i]); 
}

void put_forks(int i)
{
    wait(mutex);
    state[i] = THINKING;
    try_to_eat((i+1)%5);
    try_to_eat((i+4)%5);
    signal(mutex);
}
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Solution to Dining Philosophers (Cont.)

void try_to_eat (int i) { 
        if ((state[(i + 4) % 5] != EATING) &&
        (state[i] == HUNGRY) &&
        (state[(i + 1) % 5] != EATING) ) { 
            state[i] = EATING ;

       signal(S[i]) ;
        }

   }

   initialization_code() { 
    for (int i = 0; i < 5; i++)
       state[i] = THINKING;

   }

The code for trying to eat:
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Linux Synchronization

 Linux:
 Prior to kernel Version 2.6, disables interrupts to 

implement short critical sections
 Version 2.6 and later, fully preemptive

 Linux provides:
 Semaphores
 atomic integers
 spinlocks
 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and 
disabling kernel preemption
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Synchronization in Linux

 There are several options for process and thread 
synchronization in Linux.
 Atomic variables

atomic_t is the type for atomic integer
 Consider the variables

atomic_t counter;
int value;
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POSIX Synchronization

 POSIX API provides
 mutex locks
 semaphores
 condition variable

 Widely used on UNIX, Linux, and macOS
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POSIX Mutex Locks

 Creating and initializing the lock

 Acquiring and releasing the lock
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POSIX Semaphores

 POSIX provides two versions – named and unnamed.
 Named semaphores can be used by unrelated processes, unnamed cannot.
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POSIX Named Semaphores

 Creating an initializing the semaphore:

 Another process can access the semaphore by referring to its name SEM.
 Acquiring and releasing the semaphore:
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POSIX Unnamed Semaphores

 Creating an initializing the semaphore:

 Acquiring and releasing the semaphore:
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POSIX Condition Variables

 Since POSIX is typically used in C/C++ and these languages do not provide 
a monitor, POSIX condition variables are associated with a POSIX mutex 
lock to provide mutual exclusion: Creating and initializing the condition 
variable:
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POSIX Condition Variables

 Thread waiting for the condition a == b to become true:

 Thread signaling another thread waiting on the condition variable:
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Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages
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 Consider a function update() that must be called atomically. One 
option is to use mutex locks:

 A memory transaction is a sequence of read-write operations 
to memory that are performed atomically. A transaction can be 
completed by adding atomic{S} which ensure statements in S 
are executed atomically:

              

Transactional Memory
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 OpenMP is a set of compiler directives and API that support 
parallel progamming.

              void update(int value)
 {

#pragma omp critical
{

count += value
}

  }

The code contained within the #pragma omp critical directive 
is treated as a critical section and performed atomically.

OpenMP
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End of Chapter 7
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