
Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 7: Synchronization
Examples

7.2Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

7: Model Synchronization Problems

 The bounded-buffer, readers-writers, and dining philosophers
synchronization problems.

 Tools used by Linux to solve synchronization problems.

 POSIX solutions to synchronization problems.

7.3Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Classical Problems of Synchronization

 Classical problems used to test newly-proposed synchronization
schemes
 Bounded-Buffer Problem
 Readers and Writers Problem
 Dining-Philosophers Problem

7.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Bounded-Buffer Problem

 n buffers, each can hold one item
 Semaphore mutex initialized to the value 1
 Semaphore full initialized to the value 0
 Semaphore empty initialized to the value n

7.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Bounded Buffer Problem (Cont.)

 The structure of the producer process

 while (true) {

 ...
 /* produce an item in next_produced */

 ...

 wait(empty);

 wait(mutex);

 ...
 /* add next produced to the buffer */

 ...

 signal(mutex);

 signal(full);

 }

7.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

 while (true) {

 wait(full);

 wait(mutex);

 ...
 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex);

 signal(empty);

 ...
 /* consume the item in next consumed */

 ...
 }

7.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Readers-Writers Problem

 A data set is shared among a number of concurrent processes
 Readers – only read the data set; they do not perform any updates
 Writers – can both read and write

 Problem – allow multiple readers to read at the same time
 Only one single writer can access the shared data at the same time

 Several variations of how readers and writers are considered – all
involve some form of priorities

 Shared Data
 Data set
 Semaphore rw_mutex initialized to 1
 Semaphore mutex initialized to 1
 Integer read_count initialized to 0

7.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Readers-Writers Problem (Cont.)

 The structure of a writer process

 while (true) {

 wait(rw_mutex);

 ...
 /* writing is performed */

 ...

 signal(rw_mutex);

 }

7.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Readers-Writers Problem (Cont.)

 The structure of a reader process
 while (true){

 wait(mutex);
 read_count++;
 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...
 /* reading is performed */

 ...

 wait(mutex);
 read count--;
 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

 }

7.10Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Readers-Writers Problem Variations

 First variation – no reader kept waiting unless writer has
permission to use shared object

 Second variation – once writer is ready, it writes as soon
as any existing writer finishes writing

 Both may have starvation leading to even more variations

7.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Dining Philosophers Problem

 Originally posed by Edsger Dijkstra in 1965 as a tape drive exercise for
his students, and later formalized by C.A.R. Hoare.

 Five philosophers sit at a round table, and spend their lives alternating
thinking and eating.

 They each have a bowl of spaghetti in front of them, and five forks are
between the five bowls.

 They need two forks to eat. They cannot eat with just one.
 Problem has morphed over the years to bowls of rice and chopsticks.

7.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Dining Philosophers Problem

 Philosophers are independent – they do not interact with their
neighbors. They try to pick up 2 chopsticks one after the other to eat
from bowl
 Need both chopsticks to eat, then release both when done

 Shared data:
 Bowl of rice (data set)
 Semaphore chopstick [5] initialized to 1

7.13Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Dining Philosophers Problem

 Formal Solution Requirements:
 Only one philosopher can hold a chopstick at a time.
 It must be deadlock-free
 It must be impossible for a philosopher to starve waiting for a

chopstick.
 It must be possible for more than one philosopher to eat at the

same time.

7.14Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 Dining Philosophers Algorithm

 Solution using semaphores
 The structure of Philosopher i:

while (true){

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 /* eat for awhile */

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 /* think for awhile */

}

 What is the problem with this algorithm?

7.15Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 Dining Philosophers #2

 A deadlock free solution uses an array of state variables and an
array of semaphores:

 A philosopher tries to take forks as follows

void take_forks(int ph_num)
{
 sem_wait(&mutex);
 state[ph_num] = HUNGRY;

 try_to_eat(ph_num);
 signal(mutex);
 wait(S[ph_num]); // wait here if could not eat
 sleep(1);
}

sem_t mutex;
sem_t S[N];
int state[N];

7.16Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 Dining Philosophers #2

 Before a philosopher picks up any chopsticks, she checks
whether her neighbors are holding any with something like this:

 The putting down of forks:

if (state[i] == HUNGRY && state[(i+1)%5] != EATING
 && state[(i+4)%5] != EATING)
{
 state[i] = EATING;
 // can eat!!
 signal(S[i]);
}

void put_forks(int i)
{
 wait(mutex);
 state[i] = THINKING;
 try_to_eat((i+1)%5);
 try_to_eat((i+4)%5);
 signal(mutex);
}

7.17Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Solution to Dining Philosophers (Cont.)

void try_to_eat (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;

 signal(S[i]) ;
 }

 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;

 }

The code for trying to eat:

7.18Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux Synchronization

 Linux:
 Prior to kernel Version 2.6, disables interrupts to

implement short critical sections
 Version 2.6 and later, fully preemptive

 Linux provides:
 Semaphores
 atomic integers
 spinlocks
 reader-writer versions of both

 On single-cpu system, spinlocks replaced by enabling and
disabling kernel preemption

7.19Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Synchronization in Linux

 There are several options for process and thread
synchronization in Linux.
 Atomic variables

atomic_t is the type for atomic integer
 Consider the variables

atomic_t counter;
int value;

7.20Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

POSIX Synchronization

 POSIX API provides
 mutex locks
 semaphores
 condition variable

 Widely used on UNIX, Linux, and macOS

7.21Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

POSIX Mutex Locks

 Creating and initializing the lock

 Acquiring and releasing the lock

7.22Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

POSIX Semaphores

 POSIX provides two versions – named and unnamed.
 Named semaphores can be used by unrelated processes, unnamed cannot.

7.23Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

POSIX Named Semaphores

 Creating an initializing the semaphore:

 Another process can access the semaphore by referring to its name SEM.
 Acquiring and releasing the semaphore:

7.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

POSIX Unnamed Semaphores

 Creating an initializing the semaphore:

 Acquiring and releasing the semaphore:

7.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

POSIX Condition Variables

 Since POSIX is typically used in C/C++ and these languages do not provide
a monitor, POSIX condition variables are associated with a POSIX mutex
lock to provide mutual exclusion: Creating and initializing the condition
variable:

7.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

POSIX Condition Variables

 Thread waiting for the condition a == b to become true:

 Thread signaling another thread waiting on the condition variable:

7.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Alternative Approaches

 Transactional Memory

 OpenMP

 Functional Programming Languages

7.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 Consider a function update() that must be called atomically. One
option is to use mutex locks:

 A memory transaction is a sequence of read-write operations
to memory that are performed atomically. A transaction can be
completed by adding atomic{S} which ensure statements in S
are executed atomically:

Transactional Memory

7.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 OpenMP is a set of compiler directives and API that support
parallel progamming.

 void update(int value)
 {

#pragma omp critical
{

count += value
}

 }

The code contained within the #pragma omp critical directive
is treated as a critical section and performed atomically.

OpenMP

Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

End of Chapter 7

	Chapter 7: Synchronization Examples
	Chapter 7: Synchronization Examples
	Classical Problems of Synchronization
	Bounded-Buffer Problem
	Bounded Buffer Problem (Cont.)
	Slide 6
	Readers-Writers Problem
	Readers-Writers Problem (Cont.)
	Slide 9
	Readers-Writers Problem Variations
	Dining Philosophers Problem
	Dining Philosphers Problem Details
	Solution Requirements
	Dining-Philosophers Problem Algorithm
	Semaphore Solution 2
	Slide 16
	Solution to Dining Philosophers (Cont.)
	Linux Synchronization
	Slide 19
	POSIX Synchronization
	POSIX Mutex Locks
	POSIX Semaphores
	POSIX Named Semaphores
	POSIX Unnamed Semaphores
	POSIX Condition Variables
	Slide 26
	Alternative Approaches
	Slide 28
	Slide 29
	End of Chapter 7

