
CS OSSD Open Source Software Development

Collaborative Editing: Improving Your Peers' Blogs

Prof. Stewart Weiss

Collaborative Editing: Improving Your Peers' Blogs

1 Overview

There is almost always room for improvement in creative writing. Sometimes it is the content and not the
form that needs work, but often the form needs some �xing. There might be poorly constructed sentences,
incorrect usage of words or phrases, incorrect grammatical constructions, or spelling mistakes that a spell-
checker cannot catch because they are valid words (as when you type �he� instead of �the�). The content
might be outstanding, but its message is weakened by the delivery. That is why people rely on human editors
to read their writing and make suggestions. Blogs are no exception. Many blog posts would bene�t from
inspection by another pair or two of eyes.

Being able to write well is one skill; being able to read another's writing and improve it is another. A major
purpose of this activity is to give you this experience, but it has other important objectives, namely:

• to give you experience collaborating with others on and contributing to open source projects,

• to give you experience reading other people's writing with the goal of improving it (i.e., constructive
commenting),

• to develop your Git skills further, and

• to give you practice opening issues and submitting pull requests on GitHub.

In this activity, you will perform several roles:

• You will read the blog posts of some of your classmates and open issues on them.

• You will read the issues opened by others and try to �x them. To do this, you will fork and clone
the blog post repositories, make changes in your cloned versions, push your changes back to your
upstream fork, and make pull requests to the original owners with the changes that you made. Making
these changes might require that you resolve merge con�icts in the process. If your suggested changes
warrant discussion with the blog's owner, you will have a conversation about it through GitHub and
ultimately �nd some resolution, after which the owner will close the issue.

• As the owner of a blog post repository, you might have to resolve and close issues that have been opened
on your blog posts. Some issues might be trivial enough for you to �x yourself, such as format-related
issues or minor punctuation or spelling mistakes, while others might have �xes proposed by one of your
peers. In this case, you will receive pull requests with the suggested changes and will either accept
them or have conversations in GitHub about them. Although the person submitting the pull request
should have resolved any possible merge con�ict when the request was submitted, it is possible that
he or she did not, and that there is a merge con�ict. In this case you should politely ask that person
to resolve the merge con�ict and resubmit the request.

2 Prerequisite Knowledge

Before you work on this project you should have read the chapters in the Pro Git book named Git Basics and
Git Branching. You need to understand elementary concepts about Git repositories, branches, and working
with branches and remote repositories. You should know how to use the most common Git commands on
the command line. You should know basic Markdown in case you need to suggest changes in the Markdown

used to format blog posts. You should also be familiar with the GitHub interface.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/ 


CS OSSD Open Source Software Development

Collaborative Editing: Improving Your Peers' Blogs

Prof. Stewart Weiss

3 Detailed Instructions

These instructions are divided into three categories corresponding to the three di�erent roles that you might
perform.

3.1 Opening An Issue

Suppose that you have been asked to review the blog post of a user named Shakespeare.

1. Your goal is to open issues on GitHub for one or more of Shakespeare' s posts. Examine the post
�rst for formatting problems. To do this you must be reading the web-page version of the blog, i.e.,
the one whose URL ends, for example, in �github.io/shakespeare-weekly�. Read each post �rst
for spelling errors, then for grammar errors that you can detect, then usage. Grammar errors are
sometimes obvious. For example, �who argued so good � should be �who argued so well .� Usage is
when the wrong words or expressions are used in a sentence, like �Quicksort was faster then selection

sort� should be �Quicksort was faster than selection sort.� For each mistake or weakness that you
�nd, open a separate issue. If you think a sentence is just bad for one reason or another, open an issue
and try to state constructively how it could be improved.

2. To open an issue, click the Issues tab near the top of the page, and on that tab, click the green button
on the right hand side labeled �New Issue�. In the page that opens, �ll in the Title text box with a
good and short title, and then describe the issue in the area below that. You should use links to the
posts as needed, or copy and paste the text in question. When you are �nished, click the green Submit

Issue button below the text area.

3.2 Resolving Issues and Submitting Pull Requests

Caveat: The work�ow that is described here is not a rigorous work�ow that you would use if you were
trying to contribute to an open source project with people whom you do not know personally. It is an easier
work�ow to follow, chosen because you might be asked to do this exercise before you learned some of the
more advanced features of Git that you would need to know to follow a more rigorous work�ow.

Suppose that you have been browsing the blog posts of various people and that you have found an open
issue in one of Shakespeare's posts that you think you can �x.

The work�ow that you must use is as follows:

1. Fork a copy of Shakespeare's repository.

2. Clone this fork to your local machine.

3. Make whatever changes you think are necessary to the blog post in your cloned copy.

4. When you think that a particular change is good and complete, stage it using the git add command,
and commit the staged change with a good commit message, using the git commit command.

5. Repeat the preceding instruction for each independent change that you make. If there are multiple
mistakes that you are trying to �x, or improvements that you are trying to make, each should have
its own commit with a distinct and descriptive commit message. This way it is easier to keep track of
what was done, and to accept or reject them independently.

6. When you are all �nished with these changes, you are ready to push them to your upstream fork of
Shakespeare's repository. 1

7. Push your changes to your remote using the git push command.

1 This is the step that is simpli�ed. It omits a synchronizing step: Before you push your changes to your upstream fork, you

should really pull down the most recent copy of Shakespeare's blog, in case there were changes made to it since you forked it,

and merge those changes locally. If you know how to do this, you can do it now, otherwise proceed without this step.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/ 


CS OSSD Open Source Software Development

Collaborative Editing: Improving Your Peers' Blogs

Prof. Stewart Weiss

8. You are now ready to issue a pull request. Open the GitHub page with your fork of Shakespeare's
repository. Click on the gray button labeled �New Pull Request�. GitHub will display a page with
the heading �Comparing changes�.

(a) If you are able to merge your changes into Shakespeare's repository, you will see some green text
stating, �Able to merge� :

and there will also be a button labeled �Create new pull request�.

Click on it and �ll in the upper text box with a brief message and the larger one below it with a
very detailed message. The message should reference the issue that the pull request resolves, and
should be addressed to the GitHub user who �owns� the repository. The edit area has a toolbar
that you can use to do this:

The @ symbol precedes the GitHub username to whom you want to address the message. A #

followed by a number references an issue number. For more information about formatting and
editing in the GitHub interface, see Writing on GitHub.

Then click the �Create pull request� button. You are �nished with the submission of the pull
request. (This does not mean it will be accepted without further work on your part.)

(b) If GitHub is not able to merge your changes automatically, you will see instead the message

Click the �View Pull Request� button, and in the new page, click the gray �Resolve conflicts�
button. GitHub will now display the portion of the �le with the two di�erent pieces of text that
must be resolved. It will look something like this:

<�<�<�<�<�<�< master

You can submit *Pull Requests* from your fork to the original repository

to help make other people's projects better by offering your changes up

to the original project.

=======

You can submit *Pull Requests* to the original owner to help make other

people's projects better by offering your changes up to the original project.

>�>�>�>�>�>�> master

You need to edit the paragraphs in place, deciding how to combine them, and deleting the lines
with the �<�, �=�, and �>� symbols. Then click the �Mark as resolved� button and then the
�Merge commit� button that is displayed. You are �nished with the submission of the pull request.
(This does not mean it will be accepted without further work on your part.)

3.3 Closing Issues

If there is an issue on your repository that is very trivial, you can make the changes and close it yourself.
It is fairly simple to do this; just use the editor in GitHub on the �le that needs the changes, return to the
Issues list, select the issue, write a very descriptive comment, including an acknowledgment and a word of
thanks to the person who opened the issue and/or the one who submitted the �x for it, and click the �Close
Issue� button on the page that displays. Finally, you should go back to your local copy of the repository
and pull down the latest changes using the git pull command.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://help.github.com/en/categories/writing-on-github
http://creativecommons.org/licenses/by-sa/4.0/ 


CS OSSD Open Source Software Development

Collaborative Editing: Improving Your Peers' Blogs

Prof. Stewart Weiss

3.4 Accepting and Closing Pull Requests

In this case you are the owner of the blog and you need to review submitted pull requests and decide what
to do with them. The instructions for doing this are not the ones you would normally use for working in an
open source project as a contributor because they are simpli�ed for this exercise. Normally you would pull
down your repository and create separate branches locally to make the changes, and then push them back
up, but for this exercise you will work directly in GitHub. Again, the reason for this is that in this exercise
there is no assumption that you have mastered enough Git to perform the more advanced work�ow.

1. When you, as the owner of a GitHub repository, receive a pull request from someone, you should review
the request and then decide if it is acceptable. If so, you need to merge the changes into your repository.
If not, you should have a conversation with its author. On your repository page, click on the �Pull
Requests� tab:

2. In the "Pull Requests" list, click the pull request you'd like to review and close.

3. Click on the �Files Changed� link near the top of the page to review the di�erences between your
current �le and the proposed changes in the request.

4. Click on the Review Changes button. Decide which option you want to choose and then click Submit

Review. If there is a merge con�ict, you should request the person submitting the request to resolve
the con�ict and resubmit.

5. Assuming that there are no merge con�icts, you should see a green �Merge Pull Request� button.
Click this button to merge the changes into your current branch. You have �nished the task.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/ 

	1 Overview
	2 Prerequisite Knowledge
	3 Detailed Instructions
	3.1 Opening An Issue
	3.2 Resolving Issues and Submitting Pull Requests
	3.3 Closing Issues
	3.4 Accepting and Closing Pull Requests 


