
Compiling and Running Open MPI Programs 

Stewart Weiss. Copyright 2019. Licensed under CC BY 4.0. 

Compiling an MPI Program 

Use mpicc to compile C programs, mpic++ to compile C++ code. To compile a program using mpicc, use the same options
as you would for gcc but use mpicc instead. For example, to build an executable from a single source file named
my_mpi_prog.c, turning on all warnings (-Wall) and the debugging symbols (-g) use 

			mpicc	-Wall	-g	-o	my_mpi_prog		my_mpi_prog.c
 

Running an MPI Program on a Single Host 

To run an executable that has been compiled using mpicc or mpic++, use mpirun with the appropriate flags. See the
OpenMPI man page for a complete list of the flags and options. This README document only describes some basic
running options. 

To schedule MPI processes on all available logical cores on a single multi-core processor use 

					mpirun	--use-hwthread-cpus		<executable>
 

To schedule MPI processes on all available cores on a single multi-core processor use 

					mpirun			<executable>
 

To get the number of cores on the processor, one easy command is: 

								lscpu	|	grep	"^CPU(s):"
 

whose output on a 12 core host will be 

									CPU(s):														12
 

To get just the number, use 

								lscpu	|	grep	-w	"^CPU(s)"	|	awk	-F":[	]*"		'{print	$2}'
 

which will output 12	

The -np option is how you specify the number of processes to create. For example, to schedule N MPI processes regardless
of how many cores there are on a single multi-core processor use 

					mpirun		--oversubscribe	-np	N		<executable>
 

If you just type 

						mpirun	-np	N		<executable>
 

MPI will schedule N tasks across however many cores it finds on your local host, and try to load balance accordingly. For
example, 12 processes on 4 cores will result in 3 per core on average. 

To attach information about which process wrote output, use 

						mpirun	-tag-output	-np	<NUMCORES>		<executable>
 

which prepends [jobid,	rank]<stdxxx> to each output line, where stdxxx is either stderr or stdout. 

Scheduling MPI Processes on Multiple Hosts 

This is a complex topic, but the general idea is that MPI has to be able to launch your processes on the separate hosts, and

https://creativecommons.org/licenses/by/4.0/


This is a complex topic, but the general idea is that MPI has to be able to launch your processes on the separate hosts, and

to do that it needs 

1. to know the addresses of the hosts on which to run them, and

2. to be able to start up processes using your username on the remote hosts. 

The first requirement is solved by giving it a hostfile, as is shown below. The second is solved on by using ssh
authentication keys as a means of authentication instead of passwords. Instructions for how to set up ssh authentication
using an RSA key-pair are below, site specific to our Computer Science Department network. 

Setting Up SSH Authentication 

One Time Configuration. Set up SSH as the authentication agent as follows: 

To create authentication keys, type the following three commands on any cslab host: 

					ssh-keygen	-t	rsa
					cp		~/.ssh/id_rsa.pub			~/.ssh/authorized_keys
					chmod	go-rwx	~/.ssh/authorized_keys
 

The first command creates the public and private RSA keys, storing the public key in ~/.ssh/id_rsa.pub; the second
copies the public key to the file ~/.ssh/authorized_keys; the third removes read/write/execute permission from
everyone except the owner of the file,i.e., you. 

Because your home directory is remotely mounted by every host in the lab, all hosts on which you would launch an MPI
process will have a copy of the public key in the authorized_keys file, and all from which you might launch a job will have
the private key in ~/.ssh/id_rsa, making the key-pair authentication universal among the set of lab hosts. 

Per Session Configuration. Each time you start a new work session, meaning each time you login, type the following: 

					ssh-agent	bash
					ssh-add
 

You can create a script if you like to make this one step. Put the following lines into a file named startsession, and make
it executable: 

					#!/bin/bash
					ssh-agent	bash
					ssh-add
 

Then just type startsession once after logging in. These lines basically make bash an agent for ssh, storing your private
key(s) in the agent for authentication. 

Creating a Hostfile 

A hostfile is a file that contains, int its simplect form, one host IP address per line. It can also contain how many slots, i.e.,
cores, that host has. You can also use DNS names instead of IP addresses. 

The script on the server in the mpi_demos/scripts directory named buildHostfile.sh is designed to create a list on
standard output of all available hosts named in the form cslabXX in the Computer Science Department network. To create
a hostfile, run it and redirect output to a file. Enter the command 

				buildHostfile	>	myhostfile
 

It will also print a message on the terminal stating how many slots and hosts are available. Save the number of slots that it
outputs. 

Running the MPI Program Using the Hostfile 

You can now run your MPI program using this hostfile. Make sure that the number of processes specified by the -np option
does not exceed the total number of slots. It can be smaller. Run the command 

					mpirun	--hostfile	myhostfile	-np	N	<executable>
 

where N is the number of processes to run on the hosts and <executable> is the name of the program. If there are errors,
it may be because some of the hosts are no longer accessible when you run the program. In this case you can edit the
hostfile to remove the hosts that MPI reported as unavailable. 



Running an MPI Program on Multiple Hosts Without a Hostfile 

An alternative to creating a hostfile is to specify the names of the hosts in the command that invokes mpirun. 

Suppose that you wish to run one copy of your MPI program on each of the hosts cslab8, cslab10, and cslab14. The
command 

					mpirun	-H	cslab8,cslab10,cslab14	<executable>
 

will do that. Do not put spaces after the commas. 

Although the documentation for mpirun states that you can specify multiple processes to run on the hosts using various
ways, the only way that is safe to use is to specify a host name on the command line as many times as you want processes
on that host. For example, to run 3 processes on cslab8 and two on cslab14, type 

					mpirun	-H	cslab8,cslab8,cslab8,cslab10,cslab14,cslab14	<executable>
 

You can also run a program spawning processes on a single host cslab8 by entering 

					mpirun	--host	cslab8:<N>	<executable>
 

Debugging an MPI Program 

Debugging any parallel program is difficult. There are two types of errors, or “bugs”: 

Timing-independent errors
Timing-dependent errors 

The first are errors that result in incorrect output or failures regardless of the relative order in which the processes
execute. They are easier to find than the second ones. 

Timing-dependent errors depend on the relative order in which the processes execute. They can be extremely hard to find. 

Regardless of which type your bug is, the debugging procedure should begin in the same way. The procedure that I
recommend is what follows. 

1. Modify the source code of your main program by including the following code and comments in a place where you
want to start stepping through the code, such as immediately after the program initializes the MPI library in main(): 

				#ifdef	DEBUG_ON
								/*	To	debug,	compile	this	program	with	the	-DDEBUG_ON	option,
											which	defines	the	symbol	DEBUG_ON,		and	run	the	program	as	usual
											with	mpirun.
											When	the	output	appears	on	the	terminal,	listing	the	pids	of	the
											processes	and	which	hosts	they	are	on,	choose	the	lowest
											pid	P	on	the	machien	you	are	connected	to.
											Open	a	new	terminal	window	and	in	that	window	issue	the	command
															gdb	--pid	P
															(or	gdb	-p	P	on	some	systems)
											and	after	gdb	starts,	go	up	the	stack	to	main	by	entering	the
											command
															up	3
										(main	will	be	three	stacks	frames	above	your	current	frame,
											which	should	be	nanosleep.)
										Then	enter	the	command
															set	var	i	=	1
										to	break	the	while	loop.	You	can	now	run	ordinary	gdb	commands	to
										debug	this	process.	This	should	be	process	0.
										Repeat	these	steps	for	each	other	process	that	you	created	in
										the	mpirun	command.
								*/

								#include	<unistd.h>

								int	i	=	0;
								char	hostname[256];



								gethostname(hostname,	sizeof(hostname));
								printf("PID	%d	on	%s	ready	for	attach\n",	getpid(),	hostname);
								fflush(stdout);
								while	(0	==	i)
												sleep(5);
				#endif
 

If your program is already using the variable i, then instead of i in the inserted code, pick a different variable name. 

The directive to include unistd.h is needed because the above code uses the function gethostname, which is declared in
that header file. 

1. The comment above describes what you must do, but to clarify some of the steps: After you insert the code, compile
with a line of the form 

				mpicc	-g	-DDEBUG_ON	-Wall	-o	<your_executable>			<source_files>
 

	If	you	need	to	pass	linker	or	loader	flags	you	do	that	as	well.
 

1. Run the program with the least number of processes you need to look for the bug. I suggest two to start.

2. After you start stepping through each process, if you reach a communication point or a barrier, you’ll have to make
sure all processes reach it before the others can continue.

3. If you are unfamiliar with gdb, now is the time to learn it. 


