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Appendix A Summary of Communication Operations

This appendix consolidates information about the collective communication operations available in MPI and
their time complexities. The times required to complete the operation given in the third column of Table
A.1 assume two things:

1. The underlying hardware network has the capability of concurrently transmitting the number of mes-
sages given in the fourth column.

2. The underlying network software uses an algorithm that considers the message size and determines the
most e�cient routing algorithm based on that size.

Operation MPI Name Time Requirement Bandwidth

Requirement

one-to-all broadcast MPI_Bcast (λ+m/β) log p Θ(1)
all-to-one reduction MPI_Reduce

all-to-all broadcast MPI_Allgather

all-to-all reduction MPI_Reduce_scatter

all-reduce MPI_Allreduce

gather MPI_Gather

scatter MPI_Scatter

all-to-all
personalized

MPI_Alltoall

Table A.1: Collective communication operations in MPI and their complexities, assuming a hypercube-
based transmission structure. The time requirement assumes that the physical network supports concurrent
transmission of the number of messages given in the last column, which is stated in asymptotic notation.
When there is a minimum, listed, it is based on the assumption that the network software will choose the
fastest algorithm depending on the message length, m. The parameter λ is the message latency, and the
parameter β is the link bandwidth. All links are assumed to have equal bandwidth.
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Appendix B MPI Error Values

Symbolic Name Value Meaning

MPI_SUCCESS 0 Successful return code.
MPI_ERR_BUFFER 1 Invalid bu�er pointer.
MPI_ERR_COUNT 2 Invalid count argument.
MPI_ERR_TYPE 3 Invalid datatype argument.
MPI_ERR_TAG 4 Invalid tag argument.
MPI_ERR_COMM 5 Invalid communicator.
MPI_ERR_RANK 6 Invalid rank.
MPI_ERR_REQUEST 7 Invalid MPI_Request handle.
MPI_ERR_ROOT 7 Invalid root.
MPI_ERR_GROUP 8 Null group passed to function.
MPI_ERR_OP 9 Invalid operation.
MPI_ERR_TOPOLOGY 10 Invalid topology.
MPI_ERR_DIMS 11 Illegal dimension argument.
MPI_ERR_ARG 12 Invalid argument.
MPI_ERR_UNKNOWN 13 Unknown error.
MPI_ERR_TRUNCATE 14 Message truncated on receive.
MPI_ERR_OTHER 15 Other error; use Error_string.
MPI_ERR_INTERN 16 Internal error code.
MPI_ERR_IN_STATUS 17 Look in status for error value.
MPI_ERR_PENDING 18 Pending request.
MPI_ERR_ACCESS 19 Permission denied.
MPI_ERR_AMODE 20 Unsupported amode passed to open.
MPI_ERR_ASSERT 21 Invalid assert.
MPI_ERR_BAD_FILE 22 Invalid �le name (for example, path name too long).
MPI_ERR_BASE 23 Invalid base.
MPI_ERR_CONVERSION 24 An error occurred in a user-supplied data-conversion

function.
MPI_ERR_DISP 25 Invalid displacement.
MPI_ERR_DUP_DATAREP 26 Conversion functions could not be registered because a

data representation identi�er that was already de�ned
was passed to MPI_REGISTER_DATAREP.

MPI_ERR_FILE_EXISTS 27 File exists.
MPI_ERR_FILE_IN_USE 28 File operation could not be completed, as the �le is

currently open by some process.
MPI_ERR_FILE 29
MPI_ERR_INFO_KEY 30 Illegal info key.
MPI_ERR_INFO_NOKEY 31 No such key.
MPI_ERR_INFO_VALUE 32 Illegal info value.
MPI_ERR_INFO 33 Invalid info object.
MPI_ERR_IO 34 I/O error.
MPI_ERR_KEYVAL 35 Illegal key value.
MPI_ERR_LOCKTYPE 36 Invalid locktype.
MPI_ERR_NAME 37 Name not found.
MPI_ERR_NO_MEM 38 Memory exhausted.
MPI_ERR_NOT_SAME 39
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Symbolic Name Value Meaning

MPI_SUCCESS 0 Successful return code.
MPI_ERR_NO_SPACE 40 Not enough space.
MPI_ERR_NO_SUCH_FILE 41 File (or directory) does not exist.
MPI_ERR_PORT 42 Invalid port.
MPI_ERR_QUOTA 43 Quota exceeded.
MPI_ERR_READ_ONLY 44 Read-only �le system.
MPI_ERR_RMA_CONFLICT 45 Con�icting accesses to window.
MPI_ERR_RMA_SYNC 46 Erroneous RMA synchronization.
MPI_ERR_SERVICE 47 Invalid publish/unpublish.
MPI_ERR_SIZE 48 Invalid size.
MPI_ERR_SPAWN 49 Error spawning.
MPI_ERR_UNSUPPORTED_DATAREP 50 Unsupported datarep passed to MPI_File_set_view.
MPI_ERR_UNSUPPORTED_OPERATION 51 Unsupported operation, such as seeking on a �le that

supports only sequential access.
MPI_ERR_WIN 52 Invalid window.
MPI_ERR_LASTCODE 53 Last error code.
MPI_ERR_SYSRESOURCE -2 Out of resources
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Appendix C MPI Data_type Handles and Their

Meanings

Name C Data Type

MPI_CHAR signed char
MPI_WCHAR wchar_t - wide character
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_LONG_LONG_INT signed long long int
MPI_LONG_LONG signed long long int
MPI_SIGNED_CHAR signed char
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED_LONG_LONG unsigned long long int
MPI_FLOAT �oat
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_C_COMPLEX �oat _Complex
MPI_C_FLOAT_COMPLEX �oat _Complex
MPI_C_DOUBLE_COMPLEX double _Complex
MPI_C_LONG_DOUBLE_COMPLEX long double _Complex
MPI_C_BOOL _Bool
MPI_C_LONG_DOUBLE_COMPLEX long double _Complex
MPI_INT8_T int8_t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_UINT8_T uint8_t
MPI_UINT16_T uint16_t
MPI_UINT32_T uint32_t
MPI_UINT64_T uint64_t
MPI_BYTE 8 binary digits
MPI_PACKED data packed or unpacked with MPI_Pack()/

MPI_Unpack
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Appendix D Background Mathematics

D.1 A Bit About Graphs

A graph G consists of two �nite sets, V and E. Each element of V is called a vertex , the plural of which
is vertices. The elements of E are called edges, and they consist of unordered pairs of vertices from the
vertex set V . Formally, E ⊆ V ×V . Graphs can be depicted visually by creating a node for each vertex and
a line segment for each edge. If (s, t) is an edge we would draw a line from s to t. If the pairs of edges are
ordered pairs, then the graph is called a directed graph , and we draw the lines between nodes with arrows
on their ends.

Example 1. Let G =< V,E >be a directed graph with the vertex set V = {a, b, c, d, e}, and the edge set
E = {(a, b), (a, c), (b, d), (c, d), (d, e), (e, a)}. Then we would draw this graph as shown in Figure D.1.

d

b c

a

e

Figure D.1: A directed graph with 5 vertices.

Notice that there is a path, meaning a sequence of edges, from the �rst vertex a through either b or c then
through d, then e and back to a. This is an example of a cycle . When a directed graph has a cycle it is
called a cyclic graph . If it has no cycles it is called an acyclic graph .

D.2 Di�erential Equations

A di�erential equation is an equation that relates the values of a function and one or more of its derivatives.
The function in the equation might be a function of one variable or of several variables. When it is of
one variable, it is an ordinary di�erential equation . When the function has several variables, and the
equation contains partial derivatives with respect to these, the equation is called a partial di�erential

equation . For instance

f ′(x) = 2f(x)

is an ordinary di�erential equation. Can you think of a function whose derivative is always double the value
of the function at any point? The exponential function f(x) = e{2x}satis�es this equation, so e{2x}is called
a solution of it.

It is customary to write these equation in a standard form:

5



CSci 493.65 Parallel Computing

Appendices

Prof. Stewart Weiss

f ′(x)− 2f(x) = 0

An example of a second order equation is

f ′′(x) + f(x) = 0

The sin() function is a solution to this equation, since d
dx (sinx) = cosx and d

dx (cosx) = − sinx, so
d2

dx2 (sinx) = − sinx.
An example of a very well-known partial di�erential equation is the Laplace equation :

∂2f

∂x2
+
∂2f

∂y2
= 0

This equation arises in many areas of science.

D.2.1 Finite Di�erence Equations

The approximation of derivatives by �nite di�erences is one very important method of numerically solving
di�erential equations, such as those arising in boundary value problems.

From calculus we know that the �rst derivative of a function f at a point x is de�ned by

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

(D.1)

The �rst derivative of f at a point x can be approximated by the di�erence quotient

∆h[f ](x) =
f(x+ h)− f(x)

h
(D.2)

where h is a small constant. This is basically the slope of the line between f(x)and f(x+h). The numerator
of the di�erence quotient in Eq. D.2 is called a forward di�erence because it is the di�erence between
the value of the function of the point after x and its value at x. We can also approximate the �rst derivative
with a central di�erence :

δh[f ](x) =
f(x+ h/2)− f(x− h/2)

h
(D.3)

again with h a small constant. Since the second derivative is de�ned as

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)
h

we can approximate it using the central di�erence as follows:

f ′′(x) =
f ′(x+ h/2)− f ′(x− h/2)

h

=
f(x+h/2+h/2)−f(x+h/2−h/2)

h − f(x−h/2+h/2)−f(x−h/2−h/2)
h

h

=
f(x+h)−f(x)

h − f(x)−f(x−h)
h

h

=
f(x+ h)− 2f(x) + f(x− h)

h2
(D.4)

6



CSci 493.65 Parallel Computing

Appendices

Prof. Stewart Weiss

D.2.2 Example

As an example of the application of this �nite di�erence method, in Chapter 3, we saw that the one-
dimensional heat equation was solved using the equation

ui,j+1 = ui,j +
k · ui−1,j − 2k · ui,j + k · ui+1,j

h2

where the value ui,j represented the heat at position i on a thin rod at time j and h was the distance
between successive points on the rod, and k was the di�erence between successive time intervals, so that
ui+1,j − ui,j = h and ui,j+1 − ui,j = k. The heat transfer equation in one dimension is

∂u

∂t
− α∂

2u

∂x2
= 0

where α is a constant that we can assume is 1. Using the above �nite di�erence formulas, this equation
becomes

u(x, t+ k)− u(x, t)
k

=
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2

because u is a function of both time and position. If we replace u(x, t+k) by ui,j+1 and u(x+h, t) by ui+1,k

and so on, this formula becomes

ui,j+1 − ui,j

k
=
ui+1,j − 2ui,j + ui−1,j

h2

or

ui,j+1 − ui,j =
k · ui+1,j − 2k · ui,j + k · ui−1,j

h2

and �nally

ui,j+1 = ui,j +
k · ui−1,j − 2k · ui,j + k · ui+1,j

h2
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