CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

Chapter 5 Floyd’s Algorithm

“The single biggest problem in communication is the illusion that it has taken place.” - George
Bernard Shaw [T

5.1 Introduction

The purpose of this chapter is to use a relatively easy problem as a means of introducing point-to-point
communication among processes. The problem is also an interesting, practical one, known as the all-pairs,
shortest-path problem. It has many different applications, but we will use the one described by Quinn [2].

Have you ever seen one of those maps that has a table whose rows and columns are labeled by the major
cities on the map, and whose entries are distances between those cities? Because travel between cities is
symmetric, the table is usually lower triangular (meaning only the elements below the diagonal are listed.)
If not, it should not be hard to picture such a table anyway. In such tables, the distance between the cities
is presumably the distance along major roads from one point to another. It could also be the distance along
a route that takes the least time, or the distance along a route that uses the least fuel, or the distance along
a route that is the least number of miles. (These last two need not be the same route, because if the least
mileage route has traffic signals every mile, the fuel consumption will be greater than a longer one with no
signals.) Regardless of which notion of distance was used to build the table, what it does is to provide us
with the distance between every pair of cities in a given set of cities. Let us assume that it is the shortest
distance, by whatever definition of shortest the cartographers had in mind.

In this chapter we will develop a parallel algorithm that could be used to create such a table from the
appropriate input data. It will be based on a well-known sequential algorithm that solves this problem,
Floyd’s algorithm. We will also introduce the following MPI functions:

MPI Function Purpose

MPI_Send performs a blocking send to another process
MPI_Recv performs a blocking receive from another process
MPI_Get_count returns count of items received in a receive operation
MPI_Abort terminates the entire MPI execution and cleans up

5.2 The All-Pairs Shortest Path Problem

Abstractly, a collection of cities with inter-city distances can be represented by a graph. For this problem,
we will assume that the graph is directed. A directed graph G =< V,E > is a finite set V of wvertices
together with an adjacency relation £ C V x V on the set. If v and w are vertices such that (v,w) =e € E,
we say that there is a directed edge e from v to w, and we say that e is ¢ncident upon both v and w. We
also say that w is adjacent to v.

The edges in a graph can have associated weights, in which case the graph is called a weighted graph. We
can think of the edge weights as distances between the vertices. Weighted graphs are a useful abstraction:
edge weights can represent distances, costs or even capacities, as if the edges represented pipes and the
weights were their diameters. In our application, edge weights are distances.

Figure contains a weighted, directed graph. It shows that the distance from vertex 0 to vertex 1 is
5, for example, and that the direct distance from vertex 3 to vertex 4 is 4. But notice that the distance
from vertex 3 to vertex 4 obtained by traveling through vertex 5 is 1 + 2 = 3, illustrating that the shortest
distance between two vertices is not necessarily the one along the least number of edges. The all-pairs,

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

0 1 2 3 4 5
0] 0) 1 o0 oo 8
1] 2 0 2 o 4 o0
2|00 o0 O 2 oo ™
3|00 oo oo 0 4 2
4100 1 o0 o0 0 o0
5|00 oo oo oo 1 0

Figure 5.1: A weighted, directed graph and its adjacency matrix representation.

shortest-path problem is, given a graph G, to find the lengths of the shortest paths between every pair of
vertices in the graph.

The first step in designing an algorithm to solve this problem is deciding how to represent the graph itself.
There are a few different ways of representing a graph, and some are more suitable than others for particular
problems. For this particular problem, the best representation is an adjacency matrixz. An adjacency
matrix for a graph G with n vertices is an n x n matrix A such that A;; is the distance from vertex ¢ to
vertex j, for 0 < i, j < n — 1. If there is no edge from vertex i to vertex j, a suitable constant is assigned
to A;;. It depends upon the application. For the all-pairs, shortest-path problem, conceptually we want
to assign oo to these entries, and when we do arithmetic, we would use the rule that co + ¢ = oo for all
constants c. In Figure the adjacency matrix has oo in all entries that correspond to non-existent edges.
In an actual application, we would have to use a very large number instead.

The adjacency matrix representation uses an amount of storage proportional to O(n?). Other graph repre-
sentations use storage that is asymptotically smaller. When the graph is sparse, meaning that the number of
edges is small in comparison to n?, this representation may not be suitable. But for this particular problem,
the big advantage is that it is constant time access to each edge weight, and this advantage outweighs the
high cost of storage. This is why we say it is the best representation in this case. A convenience of using the
matrix is that we can use it to store the final, shortest distances between all pairs of vertices. In other words,
when the algorithm terminates, the matrix entry A;; will contain the shortest distance between vertex ¢ and
vertex j .

There are several different sequential algorithms to solve this problem; however, we will parallelize Floyd’s
algorithm. Floyd’s algorithm is also known as the Floyd- Warshall algorithm. It was discovered indepen-
dently by Robert Floyd and Stephen Warshall in 196ﬂ This algorithm has one restriction: it will not work
correctly if there are negative cycles in the graph. A cycle in a graph is a path whose final vertex is the same
as its starting vertex. A megative cycle is a cycle whose total edge weight is negative. We will assume there
are no such cycles in our graph. After all, distances between cities cannot be negative. Floyd’s algorithm
runs in ©(n?) time. A pseudo-code description is in Listing [5.1| below.

Listing 5.1: Floyd’s algorithm for all-pairs shortest paths.

1// let 4 be a n by n adjacency matriez
2for k = 0 to n-1
3 for i = 0 to n-1
for j = 0 to n-1
if (A[i,jl > Ali,k] + A[k,jl)
Ali,j]l = A[i,k] + Alk,jl;
end if

~ o o

Its history is even more complicated than this, as it was also discovered by Bernard Roy earlier, but for finding the transitive
closure of a matrix.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

8 end for
9 end for
10 end for

Initially, the length of the shortest path between every pair of vertices i and j is just the weight of the edge
from i to j stored in A[i,j]. In each iteration of the outer loop, every pair of vertices (i,j) is checked
to see whether there is a shorter path between them that goes through vertex k than is currently stored in
the matrix. For example, when k = 0, the algorithm checks whether the path from i to 0 and then 0 to j
is shorter than the edge (i,j), and if so, A[i,j] is replaced by the length of that path. It repeats this for
each successive value of k. With the graph in Figure until k = 5, the entry A[3,4] has the value 4, as
this is the weight of the edge (3,4). But when k = 5, the algorithm will discover that A[3,5] + A[5,4] <
A[3,4], so it will replace A[3,4] by that sum. In the end, the lengths of the shortest paths have replaced
the edge weights in the matrix. Note that this algorithm does not tell us what the shortest paths are, only
what their lengths are. The result of applying Floyd’s algorithm to the matrix in Figure is shown in
Figure 5.1} This particular graph has the property that there is a path from every vertex to every other
vertex, which is why there are no entries with infinite distance in the resulting matrix. Such graphs are
called strongly connected graphs.

QL W N = O

= W O oo N O O
N = R O O O =
= W o O NN
S Ot O N R W W
= O W Ut s O e
S NN e Oy O Ot

Table 5.1: The shortest-paths matrix for the graph in Figure

5.3 Dynamic Two-Dimensional Arrays

In a problem such as the all-pairs, shortest-path problem, the input consists of the elements of the adjacency
matrix for a graph. The data will be read from a file and stored into a two-dimensional array. If our program
only worked on graphs of a fixed size, it would not be very useful. For it to be useful, it needs to handle
arbitrary adjacency matrices, which implies that it must determine their size and allocate storage for them
at runtime. In C there are at least three different ways to do this, but one is much more convenient than
the others. In this section, we describe them all and explain the differences. For each description below, the
goal is to create a two-dimensional array of type float with M rows and N columns, where M and N have been
obtained at runtime.

5.3.1 Creating a One-dimensional Dynamic Array

One method of creating a two-dimensional array dynamically is to create a one-dimensional array and use
arithmetic to map row and column indices into it. The following code demonstrates this idea

/* Allocate a linear array of M * N floats */
float * A = malloc(N * M * sizeof(float));
if (NULL == A) {

/* handle error and exit */

}

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

/* To access entry A[i][j], use A[i*N + j], as in the following: */
for (i =0; i < M; i++)
for (j =0; j <N; j++)
scanf (“%f?, A[i*N + j1);

/* When finished, free as follows: */
free(A);

This method is correct, but it has two problems. One is that each access to the array element requires a
multiplication and an addition, which is costly in terms of time. A second problem is that it requires the
programmer to do the arithmetic correctly every time. What it does guarantee though is that the rows of
the two-dimensional array are stored in consecutive memory, meaning that the first element of row ¢ + 1
always comes immediately after the last element of row 4. This is important.

5.3.2 Creating a Two-dimensional Dynamic Array

In C, a two-dimensional dynamic array is actually an array of one-dimensional dynamic arrays. There is no
way to create a two-dimensional dynamic array directly. The way it is created is as follows.

/* Allocate an array of M pointers to float, one pointer per row */
float ** B = malloc (M * sizeof(floatx*));
if (NULL == B) {
/* handle error and exit */
}
/* Now allocate M arrays of N floats each, assigning the addresses
to B[i], for i = 0..M-1 %/
for (1 =0; i< M; i++) {
B[i] = malloc (N * sizeof(float));
if (NULL == B[i]l) {
/* handle error and exit */
}
}

/* We can access entry B[i] [j] directly now, as in */
for (i =0; i < M; i++)
for (j =0; j <N; j++)
scanf (“%£’, B[il[j]);

/* When finished, free as follows: */
for (i =0; i< M; i++) {

free(B[i]);
free(B);

This works correctly as well and does not have the disadvantage of requiring two arithmetic operations for
each element access. However, there is no guarantee from the C standard that successive rows are adjacent
to each other. Each time that malloc is called when allocating individual rows, it is free to allocate memory
from wherever in the heap it sees fit. Quite often it will even create padding between the end of one row
and the start of the next to align it on a multiple word boundary. This is a problem in an MPI program in
which we will need to send the entire array in a single message as a contiguous sequence of bytes of memory.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

5.3.3 The Best of Both Methods

The problems of both of the preceding methods can be overcome at the expense of using a bit more memory.
Suppose we want to allocate memory for a matrix C with nrows rows and ncols columns. We do two things:

1. We allocate a contiguous chunk of memory as in the first method, containing nrows*ncols*size bytes,
where size is the number of bytes in each matrix element. We call this the linear storage array for
the matrix. Let CStorage be the pointer to its starting address in memory.

2. Then we allocate an array C of nrows pointers. These will contain the addresses of the starts of the
rows in the linear storage array, CStorage. This is the actual 2D matrix. In other words, C[i] will be
the start of row i in the linear storage array, and C[i] [j] will be the jth entry in that row.

3. When we are finished, we have to free both of these arrays.

This method has the advantage that we do not have to do arithmetic to locate array entries, and that it is
also contiguous in logical memory. The only extra storage is for the pointer to the linear storage array; it
essentially uses the same amount of storage as the second method. The steps in C code are as follows:

/* Allocate an array of M#N floats x*/
float * CStorage = malloc(N * M * sizeof(float));
if (NULL == CStorage) {
/* handle error and exit */
}
/* Allocate an array of M pointers to float, one pointer per row */
float ** C = malloc (M * sizeof(floatx*));
if (NULL == C) {
/* handle error and exit */

}

/* Now do not allocate more memory; just point the pointers to the row starts */
for (i =0; i <M; it+) {

C[i] = &(CStoragel[i * NI);
3

/* We can access entry C[i] [j] directly now, as in */
for (1 =0; i < M; i++)
for (j =0; j <N; j++)
scanf (“%£’, C[Lil[j]);

/* When finished, there is more to free, as follows: */
free(C);
free(CStorage) ;

A function that implements this method is in Listing below. We will use this method in our parallel
algorithm (and in all future programs that need to allocate dynamic two-dimensional arrays.) With this last
method (and with the first as well), we can work with the entire array all at once if we choose. We can use
the memset function (declared in <string.h>) to initialize these arrays to zeros, for example. We cannot do
that with the second method.

Listing 5.2: alloc_ matrix()

1#include <stdlib.h>

2#define SUCCESS

3#define OUT_OF_MEM_ERR 1

4

5/%% alloc_matrizc(r,c,e, BMstorage, 8, 8Herr)

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

© 0w N O

10

* % % x

*/

If Yerr 2s SUCCESS, on return it allocated storage for two arrays in

the heap. HMstorage is a linear array large enough to hold the elements of
an 7T by c 2D matriz whose elements are e bytes long. The other, H, <s a 2D
matriz such that MN[i][j] %is the element in row % and column j.

11 void alloc_matrix(

12
13
14
15
16
17
18 {
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42

43
44

45
46
47
48
49
50
51
52
53

int nrows , /* number of rows in matric */

int ncols, /* number of columns in matric */

size_t element_size, /* number of bytes per matriz element */

void **matrix_storage, /# address of limear storage array for matrizc */

void ***matrix, /* address of start of matriz */

int xerrvalue) /* return code for error, if any */
int i

void *ptr_to_row_in_storage; /* pointer to a place in linear storage array
where a rTow begins */

void **matrix_row_start; /* address of a 2D matriz row start pointer
e.g., address of (#matric)[row] */

/* Step 1: Allocate an array of nrows #* ncols * element_size bytes */
*matrix_storage = malloc (nrows * ncols * element_size);
if (NULL == #matrix_storage) {

/* malloc failed, so set error code and quit */

xerrvalue = OUT_OF_MEM_ERR;

return;

/% Step 2: To create the 2D matriz, first allocate an array of nrows wvoid#
pointers */
*matrix = malloc (nrows * sizeof (void*)) ;
if (NULL == #*matrix) {
/* malloc failed, so set error code and quit */
*errvalue = OUT_OF_MEM_ERR;
return;

/% Step 3: (The hard part) We need to put the addresses into the pointers of
the 2D matriz that correspond to the starts of rows in the linmear storage
array. The offset of each row in linear storage is a multiple of (mcols *
element_size) bytes. So we initialize ptr_to_row_in_storage to the start
of the linear storage array and add (ncols * element_size) for each new row

start. The pointers in the array of pointers to rows are of type woid#* so
an increment operation on ome of them advances @t to the mezt pointer.
Therefore, we can awnitialize matriz_row_start to the start of the array of
pointers, and auto-increment it to advance it. */

/* Get address of start of array of pointers to linear storage, which is the
address of first pointer, (#matrizc)[0] */

matrix_row_start = (voidx*) &(*matrix[0]) ;

/% Get address of start of linmear storage array */

ptr_to_row_in_storage = (void*) #*matrix_storage;

/% For each matriz pointer, #*matriz[i], 2 = 0... nrows-1,
set i1t to the start of the ith row in linear storage */

for (i = 0; i < nrows; i++) {

/% matriz_row_start is the address of (*matriz)[i] and
ptr_to_row_in_storage is the address of the start of the <th rTow <n

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/

54
55
56
57
58
59
60
61

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

linear storage. Therefore, the following assignment changes the
contents of (*matriz)[i] to store the start of the 4ith row in linear

storage. */
matrix_row_start = (void) ptr_to_row_in_storage;
/* advance both pointers */
matrix_row_start++; /* next pointer in 2d array */
ptr_to_row_in_storage += ncols * element_size; /# nexzt Tow #*/
}
*errvalue = SUCCESS;
}

5.4 Designing the Parallel Algorithm

5.4.1 Partitioning

We use Foster’s design methodology to develop the algorithm. The first step is partitioning. From the
pseudo-code description of Floyd’s algorithm, we can see that there is little choice as to whether to use
domain decomposition or functional decomposition, because the algorithm is essentially performing a single
task in a deeply nested set of for-loops. This task executes an if-statement n> times. Hence we use domain
decomposition because it is very data parallel and has no functional parallelism at all. It should be clear that
we can create a task for each of the n? matrix elements A[i, j] and let each task be responsible for updating
its element.

It would not make sense to create n® tasks, because this would be like the boundary value problem from
Chapter 3 with the value of k replacing the variable for time in that problem. In that problem we created a
two-dimensional grid of tasks during partitioning but after we saw that the tasks in row i could no nothing
until the tasks in row ¢ — 1 had completed, we agglomerated them into a one-dimensional array of tasks.
The same thing would happen in this problem if we created a three-dimensional grid. The tasks with value
k could not do anything until those with value £ — 1 terminated.

5.4.2 Communication

In the pseudo-code description of Floyd’s algorithm, we see that the task responsible for updating A, j]
needs the values of A[i, k| and A[k, j]. Using the graph from Figure for example, when k = 2,

e the task responsible for A[0, 1] needs access to A[0,2] and A[2, 1];
e the task responsible for A[1,1] needs access to A[1,2] and A[2,1];
e the task responsible for A[2, 1] needs access to A[2,2] and A[2, 1];
e the task responsible for A[3, 1] needs access to A[3,2] and A[2,1];
e the task responsible for A[4, 1] needs access to A[4,2] and A[2,1];

e and the task responsible for A[5, 1] needs access to A[5,2] and A[2,1].

Notice that A[2,1] is required by every task in column 1 of the matrix when k = 2. More generally, for
any fixed value of k¥’ and j, the value of A[k’, j] is required by every task in column j of the matrix when
k = k'. This is symmetric with respect to rows too. Consider the tasks responsible for the elements
AJ0,0], A[0,1], ..., A[0,5] when k = 2:

e the task responsible for A[0, 0] needs access to A[0, 2] and A[2,0];
e the task responsible for A[0, 1] needs access to A[0,2] and A[2,1];

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

R
| O @D.00.0
: : O~ @00 .0 .0
QO O O Off O 3@«(@@@
OW
; d O s O-@0.0 0.0

(a) Each task in row 1 broadcasts to (b) Each task in column 1 broadcasts
tasks in same column. to tasks in same row.

w

~
N

Figure 5.2: Row and column broadcast communication pattern in parallelization of Floyd’s algorithm

the task responsible for A[0, 2] needs access to A0, 2] and A[2,2];

the task responsible for A[0, 3] needs access to A0, 2] and A[2, 3];

the task responsible for A[0, 4] needs access to A0, 2] and A[2,4];
e and the task responsible for A[0, 5] needs access to A[0,2] and A[2,5].

So for any fixed value of k and 4, the value of A[i, k] is required by every task in row ¢ of the matrix. These
two facts imply that, during iteration k of the outer loop, each element of row k of A must be broadcast to
every task in the same column as that element, and every element of column k of A must be broadcast to
every task in the same row as that element. A broadcast is a global communication operation in which a
single task sends a message to all processes in its communication group. This is depicted visually in Figure
The figure shows the two broadcasts that take place during the iteration of the outer loop when k = 1:
row 1 and column 1 are each broadcast as illustrated. As k is incremented, the shaded (broadcast) row
moves downward and the shaded (broadcast) column moves rightward. In other words, the communication
pattern changes with every iteration of the loop.

So far, the idea is that each task will execute a loop of the form

for k = 0 to n-1
if (A[i,3j] > A[i,k] + Alk,j]1)
Ali,j]1 = A[i,k] + Alk,jl;
end if
end for

To simplify this a bit, we will replace the if-statement with a call to a min functiorﬂ which is computationally
equivalent:

for k = 0 to n-1
Ali,j1 = min (A[i,3], Ali,k]1 + Alk,j1);
end for

We have not yet put the code in here to broadcast the k" row and column before the updates that each task
performs to its matrix element. The first question is whether it is correct for every element of the matrix
to be updated simultaneously. In other words, will the final result be the lengths of the shortest paths if we
allow simultaneous updates to different matrix elements such as A[l, 3] and A[2,3]7 Isn’t it possible that

2We will use a macro to implement min, since it is much faster in terms of execution time.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

the update to A[1, 3] changes in such a way that the update to A[2, 3] would be incorrect unless the second
update waits for the first to finish?

Fortunately, the answer to this question is no. To see this, consider the update to be executed in some
iteration k:

Ali, j] = min(A[i, j], Ali, k] + A[k, j]); (5.1)

This shows that the update to A[i, j] in iteration k requires the values of A[i, k] and A[k, j]. Each of these
is being updated simultaneously by two other tasks. Can the change in their values lead to an incorrect
shortest path length? Consider first how A[i, k] is updated. The statement that updates it in this iteration
is

Ali, k] = min(A[i, k], A[i, k] + Alk, k]);

This is where the assumption of no negative cycles in the graph is needed. There are no negative cycles in
the graph, which means that there is no path from vertex k£ back to vertex & whose total weight is negative.
Therefore 0 < Alk, k]ﬂ This implies that A[i, k] < A[i, k] + A[k, k], implying that A[s, k] retains its current
value. Now consider how A[k, j] gets updated in this iteration. The statement that updates it in this iteration
is

Alk, j] = min(A[k, j], Alk, k] + A[k, j]);

Again, because 0 < Alk, k], Alk, j] also retains its current value. Now returning to Equation if neither
of Afi,k] or Alk,j] can change its value in this iteration, then the updates can take place simultaneously
without altering the final result. This implies that it is correct to perform the broadcast and then let every
task simultaneously update its matrix element.

5.4.3 Agglomeration and Mapping

The next step is to determine whether we should agglomerate tasks to reduce communication and how to
map them to processors. Once again, we use the decision tree from Chapter 3. Since the number of tasks
is static, the communication pattern is structured, and each task has the same amount of computation, we
should agglomerate to reduce the communication overhead, and create one task per processor. We will create
one task for each physical processor and assign multiple matrix elements to it as needed. Each task will
become an MPI process.

Assume we have p processors. We have to agglomerate n? primitive tasks into p tasks. There are some
obvious ways to do this. We could agglomerate tasks in adjacent rows, or agglomerate tasks in adjacent
columns. These are two different decompositions. We could also agglomerate tasks that form sub-matrices
of the original matrix. We save that method of agglomeration for a later chapter and consider the first two
methods.

5.4.3.1 Choice 1: Row-wise Agglomerating

If we assign adjacent rows of the matrix to each of p tasks, then the broadcast operations that delivered
matrix elements to all tasks in the same row are eliminated, because these just become accesses to local
memory in the task. The broadcast operations that delivered matrix elements to all tasks in the same
columuns are not eliminated. If p divides n evenly, then each task gets n/p adjacent rows. If not, then some
tasks get |n/p| rows and others get [n/p] rows. We will describe the details of this distribution shortly.

3Tn our example graph, there were no edges from a vertex to itself, but in some graphs there may be, in which case the
distance from a vertex to itself could be positive.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

3

‘)

;| o

(a) Broadcast when k& = 1 in row-wise ag- (b) Broadcast when ¥ = 1 in a
glomeration. column-wise agglomeration.

Figure 5.3: Broadcasts in two different agglomerations.

Either way, in each iteration of the outer loop, exactly one row must be broadcast to all other tasks. (This
is illustrated in Figure) Assuming that the binomial tree model of broadcast is used, it takes [log p]
time to broadcast a message to all processes. Each message has a latency of A. The transfer time is the size
of the message divided by the bandwidth of the channels, so it is n/8. The total communication time in
each iteration is [logp]| (A +n/pB).

5.4.3.2 Choice 2: Column-wise Agglomeration

If we assign adjacent columns of the matrix to each of p tasks, then the broadcast operations that delivered
matrix elements to all tasks in the same column are eliminated, because these just become accesses to local
memory in the task. The broadcast operations that delivered matrix elements to all tasks in the same rows
are not eliminated. (This is illustrated in Figure [5.3b}) The analysis is symmetric and the communication
time per iteration is the same: [logp] (A +n/f).

5.4.3.3 Chosen Method

Which method do we choose? The choice is pretty much made for us because the C language specifies that
a two-dimensional matrix should be stored in row-major order, i.e., one row after another in logical memory.
If we were to choose a column-wise agglomeration, then every process would have nonconsecutive memory
locations for each column, making the memory accesses inefficient and the programming more complex.
Furthermore, the program will be getting the input data from a file, and the natural way to store two-
dimensional matrix data in a file is by rows. If we chose to agglomerate by columns, reading that data and
distributing it to the different tasks would also be harder. Thus, we will use a row-wise agglomeration.

Each process gets a consecutive sequence of rows of the matrix. A rather elegant approach to this is described
by Quinn [2], and it is the one we use. For each k = 0, 1, 2, ..., (p — 2), process k will be responsible for
rows | kn/p| through | (k + 1)n/p| — 1. Process (p — 1) will be responsible for the remaining rows, which will
therefore be [n/p] . To make this concrete, suppose that n = 43 and p = 5. The following table shows how
the rows would be distributed.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

Process Rank | Starting Row Last Row Number of Rows
0 0 |43/5]| —1=7 8
1 |43/5] =8 |86/5] —1 =16 9
2 |86/5] =17 [129/5] —1 =24 8
3 [129/5] =25 |172/5]| —1 =33 9
4 [172/5| = 34 42 9

Table 5.2: Example of distribution of rows among processes. In this example, there are 43 rows and 5
processes.

Notice that some of the processes will have more rows than others. The difference will always be at most 1
- some will have[n/p] rows, and others |n/p)| rowﬂ What happens to be true is

Lemma 1. If each process k =0, 1, 2, ..., p — 2, is responsible for rows |kn/p| through |(k+ 1)n/p| — 1,
and process p — 1 is responsible for the remaining rows, then process p — 1 has [n/p| rows, which is at least
as large as the number of rows assigned to all other processes.

This fact will be important when we come to matrix input.

Exercise 2. Prove that, if each process k = 0, 1, 2, ..., p — 2, is responsible for rows |kn/p| through
[(k+ 1)n/p] — 1, and process p — 1 is responsible for the remaining rows, then process p — 1 has [n/p] rows.

The program will need a few functions related to the method of agglomeration. Assume that the number of
processes is fixed at p and the number of rows is fixed at n, and that 0 < p < n.

1. Given a process rank ¢, return the first row assigned to it. We will call this by, ,, ().
2. Given a process rank i, return the last row assigned to it. We will call this ub,, ,,(¢).
3. Given a process rank 7, return the total number of rows it “owns”. We will call this s, (4).

4. Given a row index j, return the rank of the process to which this row is assigned. This will be ¢, ,,(5).

The first three functions are easy to define.

lbpn(i) = Z;J (5.2)
ubp (i) = (le)nJ ~1 (5.3)
Spn(i) = (le)nJ - V;J (5.4)

and lead to straightforward implementations in C. The following function, for example, implements s, ,,(7):

inline int number_of_rows(int id, int ntotal_rows, int p)

{
return (((id + 1) * ntotal_rows) / p) -
((id * ntotal_rows) / p);
}

We make it inline to reduce overhead. The fourth, ¢, ,(j), is more subtle.

4Tfn =gp+7, 0 <7 < p, then there will be r processes with [n/p] rows and p — 7 processes with |n/p| rows.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

Theorem 3. The function
G+Dp—1

n

tpnlf) = {
is the unique value of i such that |in/p] <j < [(i+ 1)n/p] —1.
Assuming that Theorem [3|is true, then the following function can implement ¢, ,(j):

inline int owner(int j, int p, int nrows)

{

return (p * (j+1) -1) / nrous;

3

Proof. First observe that for any j in the interval [0,n — 1], there is exactly one 4 for which

lin/p] <j < [(i+1)n/p] -1

(5.5)

because the distribution of the set of numbers from 0 to n — 1 is a partition of the set; every number falls
into exactly one such interval and no interval is empty. We take this as obvious. This proves that ¢, ,(j) is
in fact a function. Next observe that the function ¢, ,(j) is a monotonically non-decreasing function of j:

for all j, t, n(j + 1) > tpn(J).

Let j be an arbitrary number in the interval [0,n — 1] and assume that iy is the number such that jop =
lion/p] is the lower bound and | jyg = (i + 1)n/p|—1 is the upper bound. If we can show that ¢, (jrB) = %0
and ¢, ,(jus) = %0, then by the monotonicity of ¢, ,(j), it follows that for any j in between the bounds,

tpn(j) = io as well.

The fraction ign/p is either a whole number or not. We can write ign = gp + r for some integer ¢ and some
r such that 0 <7 < p—1. (ris just the remainder of division by p, so it must be at most p — 1.) This means

that ion/p =g+ r/p where 0 <r/p < (p—1)/p. Let « =r/p . Then

jLB:{WbJ:Wl_MMuﬂ—l
p p p
so that
. ion
JLB = —— —«
D
. on
=jp+1 = 07+(1704)
= (e +1lp = don+(1—-a)p
] 1 1-—
o Us+Dp _ (—a)p
n n
] I)p—1 1-— -1
_ U +1p I)/
n n

1—a)

If we can show that 0 < (7717}’71 < 1, then it follows that ¢, ,(jrB) = io. We have

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

12

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

=0<(l-a)p—-1<p-1
1-ap-1_p-1

n n

0 <1

I
IN

So we have proved the first part, that ¢, ,(jrg) = io. We now have to prove that ¢, ,(jus) = i also. By
similar reasoning as before, we can write (ip + 1)n = gp+r for some integers ¢ and r such that 0 <r < p—1.
This implies that (ig + 1)n/p = ¢+ r/p where 0 < r/p < (p — 1)/p. Let 8 =r/p. We have

] 1) 1 -1
jUB:{(ZO+)nJ—lz(ZO+)n—l—ﬂ,Oﬁﬁﬁi
p p p
from which we have
. 0+ 1)n
Jjup+1 = M—ﬁ
p
= (up+1l)p = (io+1)n—pp
] 1
N (]UBn+ bp i0+1_@
] p—1 1
_ Gus+1p R s
n n

If we can show that 0 < 1 — % < 1, then it follows that ¢, ,(jus) = %9. Since § > 0, fp+1 > 0 and
(Bp+1)/n > 0, implying that 1 — (8p + 1)/n < 1. Since 8 < (p — 1)/p, it follows that Sp < (p — 1) and
hence Sp+ 1 < p, which implies that (Bp+1)/n < (p/n) < 1 because the number of processes is always less
than n. Therefore —(fp+1)/n > —1 and 1 — (Bp+ 1)/n > 0. Together this implies 0 < 1 — % <1, s0
the second part is proved. This completes the proof of the theorem. O

5.4.4 Input and Output of the Matrix

We first address how the program will read the adjacency matrix data and distribute its rows to the appro-
priate processes. Although we could design the program so that multiple processes will read the input file, in
the end, these read operations will probably be serialized by the operating system, because the blocks of the
file can only be delivered one at a time by the disk drive in our architectural model (no parallel I/O devices),
and we are not yet ready to learn about the complexity of parallel I/O. Therefore, we want to assign the job
of reading the matrix to a single process.

Quinn describes an efficient method for doing this[2]. The idea is to let the highest ranking process of the
p processes do the job. It will repeatedly read a set of adjacent rows from the file and send them to the
process that is responsible for them, starting with the rows for process 0, then the rows for process 1, and
so on, through process p — 2. After it has read all of these rows and delivered them, the rows that remain
are its own rows, and it reads these last rows and just keeps them.

The advantage of this approach is that, because of Lemma [} the buffer used by process p — 1 for reading
the rows and distributing them to the other processes is large enough to store the rows it has to send to the

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 13

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

other processes, and furthermore, when it is finished, the final set of rows just remains in the buffer. We will
discuss how to code this in C' and MPI shortly. We now turn to how to do output.

The program will output two matrices for comparison: the original adjacency matrix and the matrix of
shortest paths. The output algorithm is symmetric to the input algorithm. Process 0 will be responsible for
all output because we want the rows of the matrix to be printed in ascending order. It will print its own
rows, and then repeatedly request the next set of rows and print them, from processes 1, 2, ..., p — 1. It
remains in charge of the communication, just as process p — 1 was in charge during input. In other words,
process 0 will request each process to send it data, rather than acting like a passive agent and letting each
process send its data to it. This way it gets the data in the right order and at the right pace.

5.5 Point-to-Point Communication in MPI

A function to input or output the matrix in the manner described above will require a different type of
communication primitive than what we have discussed so far. A point-to-point communication is a
communication that involves just two processes, a sender and a receiver. It is different from a global or
collective communication, which involves the entire group of processes in a communicator. In a point-to-
point communication, one process will call a function that sends data, and the process that wants to receive
it will call a function that receives it.

P2 | compute stuff | receive from proc 1 | compute stuff |
1 1
I I
P1 | compute stuff | send to proc 2 | compute stuff |
1 I
1 1 1 I 1
1 1 1 1 1
1 I 1 I 1
1 I 1 1 1
. ' ' Time
t0 1 t2 t3 t4
(a) Send is called after receive.
P2 | compute stuff | receive from proc 1 compute stuff
1 1
/. .
P1 | compute stuff | send to proc 2 compute stuff
| \
| | 1 ! |
1 I 1 I 1
| | | ! |
| | : ! :
' ' Time
to t2 t1 t4 t3

(b) Receive is called after send.

Figure 5.4: Two processes in a point-to-point communication. In Figure (a), the process calls receive before
the sending process has sent anything. In (b), the sending process calls send before the other process has
called receive.

There is no expectation nor any requirement that the two processes have to call the send and receive functions
at the exact same time. On the contrary, it is expected that the calls can occur in any order. Figure [5.4]
depicts the two most likely scenarios. In Figure process P2 calls receive before process P1 calls send.
This is not much of a problem; when P1 calls send, the message is delivered to P1. But in Figure
process P1 calls send before P2 has called receive. This is the purpose of system buffering. The typical
implementation of message-passing primitives provides a system buffer; when a process sends a message, it is
copied into a buffer, and when the receiver requests it, it is delivered. This is not part of the MPI standard;
it is just how most systems will implement it.

There is another problem. Remember that in MPI, every process executes the same program. If one process
needs to call a function to send a message but another has to call a function to receive a message, then the

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 14

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

two different processes have to follow different control flow paths in the program. The program must have
conditional branches whenever there is point-to-point communication. The basic form of such a program is

if (Sender_Rank == myrank)
call the send function

else if (Receiver_Rank == myrank)
call the receive function

else ...

Only the process with rank Sender_Rank will send, and only the process with rank Receiver_Rank will
receive. We will give a concrete example below.

MPI has a few different functions related to sending and receiving, but we will begin with the two basic
ones, MPI_Send and MPI_Recv.

5.5.1 MPI_Send

The MPI_Send function performs what is called a standard-mode blocking send operation. We will
explain what this means shortly. First, its syntax:

int MPI_Send(

void *sendbuf, /* Initial address of send buffer */
int count, /* Number of elements to send */
MPI_Datatype datatype, /* Datatype of each send buffer element */
int dest, /* Rank of destination */
int tag, /* Message tag */
MPI_Comm comm /* Communicator handle x/

Notice that this function’s parameters are similar to those of MPI_Reduce. The first is the address of the
first data item to send, and the second is a count of how many such items should be sent. The third specifies
the type of each element. But the similarity ends there. The send operation must specify the rank of the
process to which this data is sent in the fourth parameter, dest. The fifth parameter is an integer tag that
can be used by the program as a label for the particular message. The last parameter is the communicator
handle of the process group to which the sender and receiver belong.

As stated above, MPI_Send is a standard-mode blocking send operation. A send operation is blocking
if the send function call does not return control to the calling process until the message has been removed
from the send buffer, so that the sender is free to modify the send buffer. This does not imply that the data
has been delivered to the recipient. It just means that the message has been copied out of the send buffer
and put someplace safe. It might be in an intermediate buffer, from which it will be delivered eventually
to the recipient. MPI does not even require that a matching receive has been executed by the receiver.
Standard-mode basically means that MPI may or may not buffer these messages; it is system dependent.
You should never write a program whose correctness depends on whether or not messages are buffered.

5.5.2 MPI_Recv

A process that needs to receive data from a sending process must call MPI_Recv. Its syntax is

int MPI_Recv(

void *recvbuf, /* [0UT] 1Initial address of receive buffer */
int count, /* Maximum number of elements to receive */
MPI_Datatype datatype, /* Datatype of each receive buffer entry x/
int source, /* Rank of the message source */
int tag, /* Message tag */

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 15

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

MPI_Comm comm, /* Communicator handle */
MPI_Status *status /* [0UT] Status of completed call */

Two of these parameters are labeled as OUT parameters; their contents are changed by the call. The first
parameter, recvbuf, is the starting address of the received elements. If the operation was successful, the first
received data item starts at that address. The second parameter is an integer that specifies the maximum
number of elements that the process is willing to receive. It might be less than what the sender tries to send,
or it might be more. If the arriving message is larger than the count, it will be truncated and result in an
error condition. If it is smaller, it is not an error.

The third parameter, datatype, is the type of the elements to be received. The fourth is the rank of the
process from which the message should be sent. There is a wild-card for this parameter. If the value
MPI_ANY_SOURCE is passed to the source parameter, it means that a message will be accepted from any
process in the communicator’s process group.

The fifth parameter is an integer tag. If an actual tag value is specified, it means that the process will
only accept a message whose sender put that particular tag value on it. If the receiving process is willing to
accept any message, regardless of its tag, it can use the wild card MPT_ANY_TAG instead. The communicator
handle is the sixth parameter, but not the last.

The last parameter is the address of a status record, of type MPI_Status. MPI_Recv can terminate either
because it successfully received a message, or because of an error condition. The status parameter can be
queried to see what happened. In C, status is a structure that contains three fields named MPI_SOURCE,
MPI_TAG, and MPI_ERRORF| Thus,

e status->MPI_SOURCE, will contain the rank of the process that sent the received message
e status->MPI_TAG will contain the tag of the received message, and

e status->MPI_ERROR will contain the error code if it terminated because of an error.

If you really don’t care to see the status, you can use the value MPI_STATUS_IGNORE as an argument instead
of the address of a status structure.

As mentioned above, the actual number of data elements in the message is not necessarily the specified
count. The process can call MPI_Get_count to get the number of data elements actually received. Its syntax
is

int MPI_Get_count(

MPI_Status *status, /* status returned by MPI_Recv */
MPI_Datatype datatype, /* datatype passed to MPI_Recv */
int *count /* [0UT] count of elements received */

The actual count is stored in the third parameter.

MPI_Recv is a standard-mode blocking receive operation. The blocking semantics are simpler than those of
MPI_Send: MPI_Recv returns only after the receive buffer contains the newly received message. This is like
the default behavior of the input functions from the C/C++ libraries: they block the process until the read
operation completes.

There is an asymmetry between sending and receiving. For one, the sender must specify the destination,
but not vice versa. For another, the receiver does not need to specify the message tag, whereas the sender
must tag the message. Third, the notion of blocking is different.

5The structure may contain additional fields.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 16

https://creativecommons.org/licenses/by-sa/4.0/

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

5.5.3 Example

The program in Listing demonstrates how two processes can execute the same program, with one sending
to the other. It makes process 0 the sender and process 1 the receiver. The receiver uses MPI_ANY_SOURCE
and MPI_ANY_TAG instead of binding a specific process and message tag statically. It inspects the status
structure for the rank of the sending process and the tag of the message. Notice also that to send a string, it
is sent with MPI_CHAR as the type, and the length of the string plus one is the count, so that the terminating
null byte is sent. The receiving process specifies a buffer large enough to hold the sender’s string. This is an
MPI version of a hello-world program. Compile it and then run it using the command

$ mpirun -np 2 send_recv_demo

Listing 5.3: send recv_demo.c

#include <string.h>

#include <stdio.h>
#include "mpi.h"
#define BUFFERMAX 20
int main(int argc, char #**argv)
{
char message [BUFFERMAX]; /#* message to send */
int id; /* rank of ezecuting process */
MPI_Status status; /* status to pass to MPI_Recv #*/
int tag = 10; /¥ a random tag wvalue */
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
if (id == 0) { /# process 0 sends */
strcpy (message ,"Hello, world");
MPI_Send (message, strlen(message)+l, MPI_CHAR, 1, tag, MPI_COMM_WORLD) ;
}
else if (id == 1) { /# process 1 receives from any process any tag */
MPI_Recv(message, BUFFERMAX, MPI_CHAR,
MPI_ANY_SOURCE ,
MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
printf ("\"%s,\" from process %d", message, id);
printf (" (Sender is process %d; tag = %d)\n",
status .MPI_SOURCE, status.MPI_TAG);
}
MPI_Finalize () ;
return 0;
}

5.5.4 Deadlock

You have to be careful when using MPI_Send and MPI_Recv because these are blocking operations and if you
use them in an incorrect way, your program can deadlock. Informally, deadlock is a state of a system of
parallel processes in which two or more processes in the system are waiting for the other to do something to
release it from waiting, but none of these processes are able to release the other because they are all waiting.
Deadlock always involves at least two processes and has some form of circular waiting, such as process 1

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 17

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

waiting for process 2, which waits for process 3 which waits for process 1. Misusing MPI_Send and MPI_Recv
can lead to deadlock, as in

int r =1, ¢ = 1;

int m, n = 1;

/* do stuff here */

if (0 ==1id) {
MPI_Recv(&r, 1, MPI_INT, 1, 1, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
m = some_function_of (r);
MPI_Send(&m, 1, MPI_INT, 1, 2, MPI_COMM_WORLD);

}

else if (1 ==1id) {
MPI_Recv(&c, 1, MPI_INT, O, 2, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
MPI_Send(&n, 1, MPI_INT, O, 1, MPI_COMM_WORLD);

}

/* other code here */

Each of the two processes calls MPI_Recv first. Because MPI_Recv blocks the caller, neither will ever reach
the MPI_Send call to unblock the other. This is a deadlock. Switching the order of the calls that process 1
makes will solve the problem, because process 1 will send to process 0, and then wait for the message from
process 0.

Deadlock can also occur if a process waits for a message with the wrong tag value, or if the wrong destination
process was named in the call.

5.5.5 Other Pitfalls Related to Point-to-Point Communication

Parallel programming is fraught with peril; you must be very careful in general, but with respect to what
we have just covered, here are a few things to keep in mind. If you run the send_recv_demo program from
Listing [5.3| using the command

$ mpirun -np 1 send_recv_demo
you will get an error of the following form (this was run on a host named harpo):

[harpo:16512] *** An error occurred in MPI_Send

[harpo:16512] #*** on communicator MPI_COMM_WORLD

[harpo:16512] #*** MPI_ERR_RANK: invalid rank

[harpo:16512] #*** MPI_ERRORS_ARE_FATAL (your MPI job will now abort)
mpirun has exited due to process rank O with PID 16512 on

node harpo exiting without calling "finalize". This may

have caused other processes in the application to be

terminated by signals sent by mpirun (as reported here).

The problem, of course, is that process 0 tries to send to process 1 but there is no process with that rank.
Remember to run your parallel program with at least as many processes as the program hard-codes. If you
have conditional instructions that contain hard-coded ranks, these must exist!

If you comment out the code that process 1 is supposed to execute and run the send_recv_demo, it will
run successfully but with no output. The call to MPI_Send will return without error; this is a reminder that
a sender does not fail just because there is no receiver. The message is sent but never received and the
program does not detect this.

On the other hand, if you comment out the call to MPI_Send, process 1 will never return from MPI_Recv and
thereby hang the program. This is not deadlock; it is a form of infinite waiting, which is waiting for an
event that will never happen.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 18

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

5.6 Matrix Input

We are now in a position to implement a function to read the adjacency matrix from a file and distribute
it to the processes in the program. The pseudo-code description follows. We will assume that the matrix
input function has the following prototype:

void read_and_distribute_matrix (

char *filename, /* [IN] name of file to read */
void **x*matrix, /* [0UT] address of matrix to fill with data */
void x*matrix_storage, /* [0UT] address of linear storage for matrix */
MPI_Datatype dtype, /* [IN] matrix element type */
int *Nrows, /* [0UT] number of rows in matrix */
int *ncols, /* [0UT] number of columns in matrix */
int xerrval, /* [0UT] success/error code on return */
MPI_Comm comm) /* [IN] communicator handle */

The function read_and_distribute_matrix will attempt to open the given filename for reading. If it fails,
it will set a nonzero error code. If it is successful, the number of rows and columns in the matrix are read,
each process allocates the memory it needs for its part of the matrix, and then the matrix data from the
file is read and distributed among the processes in the communicator group using the method described in
Section above. If it fails for any reason, it will set a nonzero error code. If it is successful, the errval
will be set to 0.

This function will be executed by every process. Therefore, since process p — 1 alone will be handling the file
input and distribution of the rows, there must be conditional statements guarding its portions of the code.
The pseudo-code is in Listing below, after which the fine points are discussed.

Listing 5.4: Pseudo-code for read_and_distribute_matrix.c

1int id = process rank process;
2int p = number of processes;
3int elementsize = number of bytes in element type;

4size_t nlocal_rows; /# will be number of rows belonging to the calling process */
5

6if (p-1 == id) {

7 open the binary file named by filename, which contains the matrix.

8 if failure

9 set an error code and set *nrows and *ncols to zero.

10 otherwise

11 read the first two numbers, assigning to *nrows and *ncols respectively.
12 }

13Do a broadcast from process p-1 of the number *nrows to all other processes.
14if (0 == #*nrows)

15 process must exit -- matrix was not read correctly.

16

17Do a broadcast from process p-1 of the number #*ncols to all other processes.
18if (0 == #*ncols)

19 process must exit -- matrix was not read correctly.

20

21 nlocal_rows = number_of_rows(calling process rank) .

22

23 Allocate 2D matrix with nlocal_rows rows, ncols columns, with elementsize bytes
per entry, assigning to *matrix and *matrix_storage. /* Each calling process s
therefore creating just a slice of the total matriz, the full width, but just
its rouws. */

24
25if (p-1 == id) {
26 For each process i, for i = 0 up to p-2 {

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 19

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

27 Read a consecutive chunk of bytes from the file that contains the rows for
process i into the storage allocated by process p-1 for itself.

28 Use MPI_Send to send the chunk to process 1i.

29 }

30 Read the remainder of the file into the linear storage allocated for itself (
process p-1).

31}

32 otherwise {

33 Call MPI_Recv to receive the data that process p-1 sends to it and store it
into the local storage allocated above.

Notes

e Because this function allocates memory for the matrix and its linear storage array, and the addresses
for these are determined by the call to malloc in the function itself, the parameters for the matrix and
its storage array are the addresses returned by malloc. Therefore, matrix is a (void*#**) parameter,
and matrix_storage is a (void**) parameter. By making them void*** and void** respectively, we
can use this function to create matrices of any underlying element type; i.e., it is generic in a sense.

e The function number_of_rows, was defined in Section [5.4.3.3

e We will also need a function, which we call get_size, with a parameter of type MPI_Datatype, that
returns the number of bytes in an object of that type. For example, get_size (MPI_INT) will return
the number of bytes in an int on the given machine. Note that MPI_Datatype is not an integer type
and that the constants MPI_INT, MPI_CHAR, etc, may be pointers to structures. This implies that a
switch statement cannot be used to implement get_size. Each process will execute the statement

element_size = get_size (dtype);
to get the element size.

e To implement line 23 in the pseudo-code above, each process will call the alloc_matrix function shown
in Listing [5.2] as follows:

alloc_matrix(nlocal_rows, *ncols, element_size,
matrix_storage,
matrix,
errval);

The variable nlocal_rows is the number of rows for which the process is responsible, *ncols is the
width of the matrix, element_size is the number of bytes in each matrix element. The matrix_storage
and matrix parameters will be filled with the addresses supplied by alloc_matrix when it allocates
memory for the process. The errval parameter will contain an error code if it fails.

e All of these functions will be in a separate source file that we call utilities.c, with header utilities.h.

5.6.1 MPI_Abort
This function will use MPI_Abort if it encounters an unrecoverable error. Its syntax is
int MPI_Abort(MPI_Comm comm, int errorcode)

MPI_Abort is called with the communicator group and an integer error code. It will terminate every task
in the communicator group. Although it is intended to pass the error code to the calling environment, it
will not in most implementations, so you will not be able to see the error from the shell that calls the MPI
program, most likely. We use MPI_Abort only when there is a chance that some processes may not receive
the same error as others, but no processes should proceed if any processes get the error. For example, if one
process is unable to allocate memory but the others did, then the program should be aborted.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 20

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing

Chapter 5 Floyd’s Algorithm

Prof. Stewart Weiss

5.6.2 Function read_and_distribute_matrix

The complete function is in the following listing. You should read the comments to understand the logic not
explained in the preceding section.

Listing 5.5: read _and _distribute matrix byrows()

1#include <stdio.h>
2#include <mpi.h>
3#include "utilities.h"

4

5void read_and_distribute_matrix_byrows (

6
7
8
9
10
11
12
13
14 {
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

char x*filename, /* [IN] mname of file to read
void **k*kmatrix, /¥ [0UT] matriz to fill with data
void **matrix_storage, /# [0UT] linear storage for the matric
MPI_Datatype dtype, /* [IN] matriz element type
int *Nrows , /¥ [0UT] number of rows in matric
int *ncols, /% [0UT] number of columns in matriz
int *errval , /* [0UT] sucess/error code on return
MPI_Comm comm) /* [IN] communicator handle
int id; /* process rank process #*/
int P /* number of processes in communicator group */
size_t element_size; /* number of bytes in matriz element type #*/
int mpi_initialized; /# flag to check if HPI_Init was called already */
FILE xfile; /* input file stream pointer */
int nlocal_rows; /* number of rows calling process "owns" #*/
MPI_Status status; /* result of MPI_Recv #*/
const int MSG_TAG=1;

/* Make sure we are being called by a program that init-ed MPI */
MPI_Initialized (&mpi_initialized);
if (!'mpi_initialized) {

*errval = -1;

return;

/* Get process rank and the number of processes in group */
MPI_Comm_size (comm, &p);
MPI_Comm_rank (comm, &id);

/% Get the number of bytes im a matriz element */

element_size = get_size (dtype);
if (element_size <= 0) {
*errval = -1;
return;
}
if (p-1 == id) {

/* Process p-1 opens the binmary file containing the matriz and
reads the first two nmumbers, which are the number of rTows and
columns respectively. */

file = fopen (filename, "r");
if (NULL == file) {
*nrows = 0;
*ncols = 0;
}
else {

fread (nrows, sizeof(int), 1, file);
fread (ncols, sizeof(int), 1, file);

*/
*/
*/
*/
*/
*/
*/
*/

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

21

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss

Chapter 5 Floyd’s Algorithm

/* Process p-1 br
MPI_Bcast (nrows,

if (0 == *nrows
*errval = -1;
return;

/* Process p-1 br
MPI_Bcast (ncols,

/* Each process se
The number of rTo
between the high

nlocal_rows = numb

oadcasts the numbers of rows to all other processes. #*/
1, MPI_INT, p-1, comm);

) {

oadcasts the numbers of columns to all other processes. #*/

1, MPI_INT, p-1, comm);

ts local_rows = the number of rows the process owns.

ws depends on id, *nrows, and p. It 2s the difference
address and the low address. #/

er_of_rows (id, *nrows, p);

/% Each process creates its linear storage and 2D matriz for accessing
the elements of its assigned rows. */
alloc_matrix(nlocal_rows, *ncols, element_size,
matrix_storage,
matrix,
errval) ;
if (SUCCESS != *xerrval) {
MPI_Abort (comm, *errval);
X
if (p-1 == id) {
int nrows_to_send; /* number of rows that p-1 sends to a process */
int num_elements; /* total number of matriz elements to send */

size_t nelemen
int i;

/* For each pr
consecutive ch
for process 1

for (i = 0; i < p-1; i++) {
nrows_to_send = number_of_rows(i, *nrows, P)
num_elements = nrows_to_send * (*ncols);
nelements_read = fread (*matrix_storage, element_size,
num_elements, file);
/*¥ Check that the number of items read matches the number requested.
If not, abort. #*/
if (nelements_read != num_elements)

ts_read; /* result of read operation #*/
/* loop indexz */

ocess 1, for 2 = 0 up to p-2, process p-1 reads a
unk of bytes from the file that contains the rouws
and then sends that chunk of bytes to process i. */

MPI_Abort (comm, FILE_READ_ERROR);

MPI_Send

}

/% Process p-1
linear stor

nelements_read

/* Check that
if (nelements

MPI_Abort (
/* Process p-1

(*matrix_storage, num_elements, dtype,
i, MSG_TAG, comm);

reads the remainder of the file into its ouwn
age. #*/

= fread (*matrix_storage, element_size,

nlocal_rows * (*ncols), file);

the number of items read matches the number requested */
_read '= nlocal_rows * (*ncols))
comm, FILE_READ_ERROR) ;

closes the file #*/

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

22

https://creativecommons.org/licenses/by-sa/4.0/

121

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

fclose (file);
}
else /* what all other processes do #*/

/* store the data sent by p-1 into the linmear storage array for *matric,
which is *matriz_storage, mnot **matriz_storage! The number of walues
ezpected ts the number of rows for this process times matriz width. */

MPI_Recv (*matrix_storage, nlocal_rows * (*ncols),

dtype, p-1, MSG_TAG, comm, &status);
}

5.7 Matrix Output

A program is pretty useless if it cannot output its results. We need a function that can output the matrix
that is computed by our parallel version of the all-pairs, shortest-paths algorithm. The output problem is
somewhat symmetric to the input problem. The pieces of the matrix are held by different processes, and
they need to be output by process 0, as noted in Section The function must collect the different sets
of rows from processes 1, 2, up to p — 1 onto process 0, which will print them. In the matrix input routine,
process p — 1 did the reading and sent data to the other processes. In this routine, process 0 must receive
data sent by other processes and then print it.

There is a fundamental difference between sending and receiving. A process that sends decides when it sends
and so controls the pace at which data transfers take place. A process that receives has no control over
when data is sent to it, and so it has no control over the data that is sent to it. If all of the other processes
sent their data at the same time, the communication channel could be inundated with so much data that it
had no buffer space available, causing needless delays and making the processor run slowly. Therefore, it is
better if the process that has to collect the data does so proactively, by issuing requests for it. In short, a
type of handshake can be used, of the form

collector process (rank=0) code:
MPI_Send (&dummydata, 1, MPI_INT, i, REQUEST_TAG, comm);
MPI_Recv (&expecteddata, num_items_expected, item_type, i,
RESPONSE_TAG, comm, &status);
print the received data;

sending process (rank=i) code:
MPI_Recv (&dummydata, 1, MPI_INT, O, REQUEST_TAG, comm, &status);
MPI_Send (&data_for_printing, num_items_expected, item_type,
0, RESPONSE_TAG, comm);

The collector first sends a message that acts like a synchronizing signal to process i; when process i receives
it, it sends the data that process 0 is expecting; process 0 has immediately executed the call to wait for that
data, so when it arrives, it can print it. This would be in a loop that process 0 executes.

The function to perform the collection and printing of the matrix will be

void collect_and_print_matrix (

void x*matrix, /* [IN] matrix to print x/
MPI_Datatype dtype, /* [IN] matrix element type */
int nrows, /% [IN] number of rows in matrix */
int ncols, /* [IN] number of columns in matrix */
MPI_Comm comm) ; /* [IN] communicator handle */

Every process will execute it. Each will pass the portion of the matrix that it controls in the first argument,
the element type (dtype) in the second, the number of rows it has in the third, and the matrix number of
columns in the fourth. The communicator is the last argument. It will make use of an auxiliary function
that can print a matrix of numbers to an arbitrary file stream. It is in the following listing.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 23

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing
Chapter 5 Floyd’s Algorithm

Prof. Stewart Weiss

Listing 5.6: print_matrix()

1void print_matrix (

2 void **matrix, /* matriz to be printed */

3 int nrows , /* number of rows in matric */

4 int ncols, /* number of columns in matrizc */

5 MPI_Datatype dtype, /* HPI type */

6 FILE *stream) /* stream on which to print */
79

8 int i, j;

9

10 for (i = 0; i < nrows; i++) {

11 for (j = 0; j < ncols; j++) {

12 if (dtype == MPI_DOUBLE)

13 fprintf (stream, "%6.3f ", ((double **)matrix)[i]l[jl);
14 else if (dtype == MPI_FLOAT)

15 fprintf (stream,"7%6.3f ", ((float *#*)matrix)[il[jl);
16 else if (dtype == MPI_INT)

17 fprintf (stream,"’6d ", ((int **)matrix)[i]1[j]);

18 1

19 fprintf (stream,"\n") ;

20 X

21 }

The implementation of collect_and_print_matrix follows.

Listing 5.7: collect

1void collect_and_print_matrix (

and_print_matrix()

2 void **matrix, /* [IN] matriz to print */
3 MPI_Datatype dtype, /* [IN] matriz element type */
4 int nrows , /* [IN] number of rows in matric */
5 int ncols, /* [IN] number of columns in matric */
6 MPI_Comm comm) /* [IN] communicator handle */
79

8 int id; /*¥ process rank process

9 int P /*¥ number of processes in communicator group
10 size_t element_size; /* number of bytes in matriz element type

11 int nlocal_rows; /* number of rows calling process "ouwns"

12 MPI_Status status; /* result of MPI_Recw

13 void *#*submatrix_buffer;/# matriz to hold submatrices sent by processes
14 void *buffer_storage; /* linear storage for submatriz_buffer

15 int max_num_rows ; /* largest number of rows of any process

16 int prompt; /* synchrontizing wariable

17 int errval ; /* to hold error walues

18

19 MPI_Comm_rank (comm, &id);

20 MPI_Comm_size (comm, &p);

21

22 nlocal_rows = number_of_rows(id, nrows, p);

23

24 if (0 == id) {

25 int i;

26

27 /* Process 0 prints its rows first. */

28 print_matrix (matrix, nlocal_rows, ncols, dtype, stdout);

29 if (p > 1) {

30 /* Get the number of bytes in a matriz element */

31 element_size = get_size (dtype);

32

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

24

https://creativecommons.org/licenses/by-sa/4.0/

33

34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

/* Get the mazimum number of rows wused by any process, which is the
number process p-1 uses. #*/
max_num_rows = number_of_rows(p-1, nrows, p);
/% Allocate the 2D matriz and backing linear storage to hold
arrays received from remaining processes */
alloc_matrix(max_num_rows, ncols, element_size,
&buffer_storage,
&submatrix_buffer,
&errval) ;
if (SUCCESS != errval) {
MPI_Abort (comm, errval);
3
/* Request each other process to send its rows. Rather than just
printing what 2t receives, which might flood the processor on which
process 0 ts running, process 0 prompts each other process to send
1ts data and then waits for 4t. This 2s a form of lock-step
synchronization */
for (i = 1; i < p; i++) {
/¥ Calculate the number of elements to be received from
process 1 #*/
int num_rows = number_of_rows(i, nrows, P)
int num_elements = num_rows * ncols;
/¥ Send a message to process i telling it to send data */
MPI_Send (&prompt, 1, MPI_INT, i, PROMPT_MSG, comm);
/¥ Wait for data to arrive from proess i */
MPI_Recv (buffer_storage, num_elements, dtype,
i, RESPONSE_MSG, comm, &status);
/* Print the matric just received */
print_matrix (submatrix_buffer ,num_rows, ncols, dtype, stdout);
3
/* Free the allocated memory */
free (submatrix_buffer);
free (buffer_storage);
X
fprintf (stdout, "\n");
3
else {
/* Wait for prompt message from process 0 #*/
MPI_Recv (&prompt, 1, MPI_INT, O, PROMPT_MSG, comm, &status);
/* 0On receiving it, send the matriz received by the call, which is
the set of rows belonging to the process that called this
function. */
MPI_Send (*matrix, nlocal_rows * ncols, dtype, 0, RESPONSE_MSG, comm) ;
3
X

5.8 The Parallel Version of Floyd’s Algorithm

We are now ready to examine the parallel version of Floyd’s algorithm, based on the previous discussions. It
is essentially the version that Quinn provides in his chapter on the algorithm [2]. The actual computation of

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 25

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

shortest paths is in the compute_shortest_paths function, the function that all processes call to compute
their portion of the shortest-paths matrix. The pseudo-code description follows.

Listing 5.8: Pseudo-code for compute shortest paths()

1Allocate a linear array named temp_row large enough to store a row of the
adjacency matrix.
2For k = 0 to n-1 do

34

4 Determine which process is responsible for row k and call it the root process.

5 If the executing process’s id == root, (there is exactly one process for which

this will be true)

6 It then determines the index of row k relative to its starting row. (

Remember that it has just a subset of the rows of the entire matrix.
For example, if k = 7 and it holds rows 5 through 9, then row k has
index 2 in this process.

7 It copies its row (which is really row k of the whole matrix) into the

temp_row.

8 All processes participate in the broadcast by the root process of this row.
Remember that exactly one process will be root. The broadcast will send
temp_row to all other processes.

9 Every process will execute the doubly-nested loop of the sequential algorithm
for its set of rows, using the temp_row in the update step:

10 for (i = 0; i < number_of_rows_of_this_process; i++)

11 for (j = 0; j < n; j++)

12 al[ill[j]l = MIN(al[il[jl,alil[k]l+temp_row[jl);

13 Because temp_row is actually row k of the matrix, the update in the loop body
is equivalent to

14 alil[jl = MIN(alil[j],alillk]l+alkI[jl);

15}

The C' code for this is in Listing Most of the code is self-explanatory. The function that determines
the owner of the row to be distributed was defined in Section This implementation includes code to
compute the timing, but not quite like the way it was done in the circuit satisfiability program from Chapter
4. In that program, the time that was printed was the time used by process 0. In this program we check
with process took the longest time and print that as the running time. That can be accomplished with
the MPI_Reduce function and the MPI_MAX operator for it. We are also curious about the total time spent
by all processes when executing this program, so we call MPI_Reduce a second time, but with the MPI_SUM
operator, to add up the time spent by all processes.

Listing 5.9: compute_shortest paths()

1void compute_shortest_paths (

2 int id, /* rank of calling process */
3 int p, /* number of processes in communicator group */
4 Element_type **xa, /#* portion of matriz owned by calling process #*/
5 int n, /¥ number of rows and columns (must be square)*/
6 MPI_Comm comm) /* communicator handle */
7

8{

9 int i, j, k; /* for genereal use */

10 int local_index; /* local index of broadcast row */

11 int root; /* process controlling row to be bcast */

12 Element_type* tmp; /* holds the broadcast row */

13 int mnlocal_rows; /* number of rows owned by process */

14

15

16 /* Allocate a linear array large enough to hold ome row of the matriz */
17 tmp = (Element_type *) malloc (n * sizeof (Element_type));

18

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 26

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 }

for (k = 0; k < n; k++) {
/* Determine which process owns the kth row. */
root = owner(k,p,n);

/* If the ewecuting process is the owner of the row, it has to send

if

}

a copy to all other processes #*/

(root == id) {

/* Compute row k’s indez in the submatriz owned by process id
It 2s k - first row mnumber, which %s floor(id*n/p) */

local_index = k - (id#*n)/p;

/% Copy the row from the submatriz owned by this process into
the temporary array to be broadcast. KHe canmot broadcast the
actual row because we will be updating it. */

for (j = 0; j < mn; j++)

tmp[j]l = allocal_index][jIl;

/* Broadcast tmp from root to all other processes #*/
MPI_Bcast (tmp, n, MPI_TYPE, root, comm);
nlocal_rows = number_of_rows (id,n,p);

for (i = 0; i < nlocal_rows; i++)

free (

1#include <
2#include <

3#include

4#include "

5#include

6

for (j = 0; j < nj; j++)
alil[j]l = MIN(a[il[jl,alil[k]+tmp[jl);

tmp) ;

Listing 5.10: mpi_floyd.c

stdio.h>
stdlib.h>

<mpi.h>

utilities.h"

"matrix_io.h"

7 typedef int Element_type;
8#define MPI_TYPE MPI_INT

9

10 void compute_shortest_paths (

11
12
13
14
15
16
17

int id, /* rank of calling process */
int p, /* number of processes in communicator group */
Element_type **a, /# portion of matriz owned by calling process #*/
int n, /* number of rows and columns (must be square)*/
MPI_Comm comm) ; /* communicator handle */

18 int main (int argc, char *argv([])

19 {
20
21
22
23
24
25
26
27
28
29
30
31

Element_type** adjmatrix; /* Doubly-subscripted array */
Element_type* matrix_storage; /# Local portion of array elements #*/
int id; /* Process rank */

int nrows ; /* Rows in matriz */

int ncols; /* Columns in matriz */

int P; /* Number of processes #*/
double time;

double max_time;

double total_time=0;

int error;

char errstring [127];

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

27

https://creativecommons.org/licenses/by-sa/4.0/

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71

72

73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &id);
MPI_Comm_size (MPI_COMM_WORLD, &p);

if (argec < 2) {
sprintf (errstring, "Usage: %s filename, where filename contains"
" binary adjacency matrix\n", argv[0]);
terminate (id, errstring);

/% Read the matriz from the file named on the command line and
distribute the rows to each process. Check error on return */
read_and_distribute_matrix_byrows (argv[1],
(void #*) &adjmatrix,
(void #*) &matrix_storage,
MPI_TYPE, &nrows, &ncols, &error,
MPI_COMM_WORLD) ;

/* Check if successful #*/
if (SUCCESS != error) {
terminate (id, "Error reading or allocating matrix.\n");

/* Check if the matriz is square and ezit if not */
if (nrows != ncols) {
terminate (id, "Error: matrix is not square.\n");

/% Gather the submatrices from all processes onto process 0 and print
out the entire matriz */

collect_and_print_matrix ((void *#*) adjmatrix, MPI_TYPE, nrows, ncols,
MPI_COMM_WORLD) ;

/* Time how long the lonmgest process takes to do its work.
Start them at the gate together using barrier synchronization. */
MPI_Barrier (MPI_COMM_WORLD) ;

/* Get the baseline time */
time = -MPI_Wtime () ;

/% Compute the shortest paths for the part of the matriz owned by the calling
process ¥/

compute_shortest_paths (id, p, (Element_type #**) adjmatrix, ncols,
MPI_COMM_WORLD) ;

/% Get the time (each process gets its own local time) */
time += MPI_Wtime () ;

/% Use a reduction with the MNAX operator to put the largest time
on process 0 */
MPI_Reduce (&time, &max_time, 1, MPI_DOUBLE, MPI_MAX, O,
MPI_COMM_WORLD) ;

/* Use a reduction using the SUM operator to get the total time
for comparing to the total serial time. */
MPI_Reduce (&time, &total_time, 1, MPI_DOUBLE, MPI_SUM, O, MPI_COMM_WORLD) ;

if (0 == id)

printf ("Floyd, matrix size %d, %d processes. "

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

28

https://creativecommons.org/licenses/by-sa/4.0/

88
89
90
91
92
93
94

95
96
97
98
99
100

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

"Elapsed time J%6.4f seconds,"
" Total time %6.4f seconds\n",
ncols, p, max_time,total_time);

/% Gather the submatrices from all processes onto process 0 and print
out the entire matriz */

collect_and_print_matrix ((void *#*) adjmatrix, MPI_TYPE, nrows, ncols,
MPI_COMM_WORLD) ;

MPI_Finalize () ;
return 0;

}

/% Code for compute_shortest_paths () is here #*/

5.9 Analysis and Benchmarking

Whenever we develop a parallel algorithm, we will analyze its time complexity, and sometimes its space
complexity. The final step in this chapter is to see how well this algorithm performs.

Because both the sequential program and the parallel program must read and print the matrix, we do
not include the time spent doing input and output of the matrix in our analysis. The sequential program
does all of the I/O in a single process. In the parallel version, one process performs the I/O and uses
message-passing to distribute or collect from the other processes. The overhead of the message passing does
increase the I/O time, but it is small in comparison to the time spent in the compute_shortest_paths
function. If you look at the code in read_and_distribute_matrix_byrows, which is symmetric to that of
collect_and_print_matrix, you see that it sends a message whose average size is ©([n?/p]) to each of
p — 1 processes, because the matrix has n? elements. Therefore, the overhead that is added is proportional
to n?. In general, it is not customary to include the overhead of distributing input data to the separate
processors in the performance analysis.

We therefore turn to the time complexity of the compute_shortest_paths function. Before the loop begins,
there is a call to allocate a linear array of size n. This is a constant time operation that we can ignore
(because the implementation of malloc does not iteratively allocate small chunks at a time.) What about
the complexity of the outermost loop? For each iteration of the outermost loop, there is a call to get the
owner of the current row, which is constant time (©(1)), a loop that copies the row from the matrix into a
buffer, which has time complexity ©(n), the broadcast, and the cost of the inner pair of nested loops. Let
us look at those nested loops first. In the code

for (i = 0; i < nlocal_rows; i++)
for (j = 0; j < m; j++)
alil[j]1 = MIN(Calil[j],alil [k]l+tmp[jl1);

the assignment is constant time; the inner loop is ©(n), and the outer loop iterates at most [n/p|times.
Therefore this code has complexity ©(n?/p).

What about the broadcast operation? The process that owns the k*" row broadcasts it to all other processes.
We know from previous chapters that the time to broadcast a message has both latency and transfer time.
In this case we can assume the transfer time dominates the cost. It is proportional to the message length,
so its complexity is ©(n). The message is broadcast to p — 1 processes. As we will always assume that it
is possible to broadcast using the binomial tree method described in Chapter 3, the time to broadcast a
message to all other processes is [log(p — 1)] and the total complexity for the broadcast is ©(n logp).

Therefore each iteration of the outermost loop has time complexity

O(1+n+nlogp+n?/p) = O(n logp + n’/p)

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 29

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

It is executed n times, so the total complexity is

O(n® logp +n°/p) (5.6)

Eq. [5.6is an asymptotic time complexity, but not a predictor of actual running time. We can derive an
expression for the running time of the actual program with a more detailed analysis and then see how well
that estimate compares to the running time on an actual parallel computer. Quinn [2] chooses a commodity
cluster as the hardware. Our analysis will use a multiprocessor with 6 cores instead.

The program has a computational component and a communication component. Let 5 be the bandwidth of
the communication links and let A be the latency. Assume that the distances stored in the adjacency matrix
are four-byte quantities, either integers or floats. Then each broadcast has a time requirement of A 4 4n/j.
It takes [logp] steps to distribute the broadcast row to each process, and there are n iterations of the outer
loop and hence n broadcasts, so the total communication time is n [log p] (A + 4n/3).

Let x be the average time needed to perform a single update to a matrix element (the assignment in the
innermost loop.) Then from the above analysis of compute_shortest_paths, the time to do one row of
updates is ny and time to do all of the rows that a process owns is [n/p] nx and the total computation time,
because this iterates n times, would be

n* [n/p] x (5.7)

Adding this to the communication time gives
n [logp] (A +4n/B) +n* [n/p] x (5.8)

This is actually an overestimate of the actual time that the program will take, because it assumes that the
communication time does not overlap computation time. Generally, this is not the case. When a broadcast
takes place, the process that sends the message usually returns from the call before the message has been
delivered, and the transfer time overlaps part of the computation time.

latency o
[logp] A transmission
time compute time

/ [log p] (4n/5) / [n/p]nx

[logp] A+ [n/p] nx

Figure 5.5: Overlap of computation and communication in the first four iterations of the parallel version of
Floyd’s algorithm, with process 0 responsible for the first 4 rows of the matrix. The figure shows how the
transfer of a message overlaps the computation of the sending process.

To make this more concrete, suppose that there are 4 processes and that the problem is sufficiently large
that process 0 owns the first 4 rows of the matrix and is therefore the sender for the first 4 iterations of
the outer loop in compute_shortest_paths. Figure [5.5 depicts this. The horizontal axis is time. Process 0

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 30

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

repeatedly broadcasts a row and then does its own update of all of the rows that it owns. Remember that
the way the broadcast takes place, process 0 first sends the message to process 2, and then each of processes
0 and 2 send their copy of the message to the process whose rank is 1 greater, so 0 sends to 1 and 2 sends to
3. The time spent by the process setting up to send the message, its latency, is shown in light gray and is
fixed for all processes. If the interconnection network is symmetric the transfer time will be the same in all
cases, but it may not be. The figure depicts the transfer time as being approximately the same. The dark
rectangles represent time during which the process cannot do anything because it is waiting to receive the
next row.

Process 0 begins by sending its row 0 to process 2 and then to process 1, after which it performs its update.
The first transfer overlaps the setup time of the second, and the second transfer overlaps the compute time.
Process 1 does nothing but compute, but it must wait each time for the data to arrive. Its initial delay is
longer, but once it gets the first row, the delay is reduced, because it is computing for the same amount of
time as process 0 and it has become synchronized with it. A similar statement is true of process 3 and its
delay with respect to process 2.

Because the computation time is longer than the time to transfer the messages, once this initial delay in the
first iteration has passed, the pattern of delay is regular, as you can see from the figure, and the amount of
time in each iteration is the same.

Let us do a bit of math. A white region of computation in the figure is the time for the process to perform the
nested loops after the broadcast, which we determined was [n/p] nx. The time to broadcast a single row to
all processes is the time from the moment process 0 has finished setting up (after the second gray rectangle)
until process 3 receives the row that was set up, which is [logp] (4n/f). If [logp] (4n/B) < [n/p] nx , then
the transmission time is strictly smaller than the compute time and after the first iteration, it does not
contribute to the total time. Therefore a more accurate expression for the running time is

n [logp] A+ n®[n/p] x + [logp] 4n/B (5.9)

because the transmission time is added to the total only once.

We ran the program on a six-core multiprocessor using inputs of size n = 1000, 2000, 3000. The bandwidth
on such as machine is very high, so we would expect that the transmission time would be very negligible.
Running the program on three input sizes with six different numbers of processors generated eighteen linear
equations of the form a; 1A+ a; 2x +a;3(1/8) =t;, 1 <i <18 . We used a linear system solver to estimate
the values of A, x, and § and then plotted the predicted curves using Eq. and the actual data in Figure
The values of the three parameters were estimated to be A = 4.39 nsec, x = 25.5 usec, and g = 47.6
KB/sec, which is probably significantly incorrect. The figure shows that Eq. s a fairly good predictor
nonetheless.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 31

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

Running Time of Parallel Floyd's Algorithm
for inputs of size N=1000,2000, & 3000

140
120

100 & Actual Times,N=1000

Actual Times,N=2000

= 80 +Actual Times, N=3000
2 -¢ Predicted Time, N=1000
3 = Predicted Time,N=2000
) Predicted Time, N=3000
© 60
£
i

40

20

Number of Processors

Figure 5.6: Graph of actual and predicted run times of parallel version of Floyd’s algorithm on a 6-core
multiprocessor.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 32

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

References

[1] Marlene Caroselli. Leadership Skills for Managers. McGraw-Hill, Inc., New York, NY, USA, 2000.

[2] M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education.
McGraw-Hill Higher Education, 2004.

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License. 33

https://creativecommons.org/licenses/by-sa/4.0/

CSci 493.65 Parallel Computing Prof. Stewart Weiss
Chapter 5 Floyd’s Algorithm

Subject Index

adjacency matrix,
all-pairs, shortest-path problem, [2]

broadcast,

cycle,

deadlock, [T7]
Floyd’s algorithm,

incident,
infinite waiting,

linear storage array, [o]

memset, [
MPI_Abort, 20]
MPI_Get_count, [I6]
MPI_Recv, 1]
MPI_Send, 15|

negative cycle,
point-to-point communication, [I4]

standard-mode blocking send operation,
strongly connected,
system buffering, [T4]

weighted graph,

This work is licensed under the |Creative Commons Attribution-ShareAlike 4.0 International License.

34

https://creativecommons.org/licenses/by-sa/4.0/

	Floyd's Algorithm
	Introduction
	The All-Pairs Shortest Path Problem
	Dynamic Two-Dimensional Arrays
	Creating a One-dimensional Dynamic Array
	Creating a Two-dimensional Dynamic Array
	The Best of Both Methods

	Designing the Parallel Algorithm
	Partitioning
	Communication
	Agglomeration and Mapping
	Choice 1: Row-wise Agglomerating
	Choice 2: Column-wise Agglomeration
	Chosen Method

	Input and Output of the Matrix

	Point-to-Point Communication in MPI
	MPI_Send
	MPI_Recv
	Example
	Deadlock
	Other Pitfalls Related to Point-to-Point Communication

	Matrix Input
	MPI_Abort
	Function read_and_distribute_matrix

	Matrix Output
	The Parallel Version of Floyd's Algorithm
	Analysis and Benchmarking

