
CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

The GTK+ TextView Widget

1 Introduction

GTK+ has an extremely powerful framework for multiline text editing. The GtkTextView widget is the
primary component of this framework. However, unlike the widgets you have seen in previous lessons, the
text view widget is part of a larger framework that is something like the model/view/controller software
architecture. In this architecture, the visual display of the data, called the view, is separate from the
manipulation and representation of the data, which is managed by a model. The GtkTreeView does not
follow this architecture exactly, but it is a good idea to keep in mind when designing your code, that this is
how things work.

The other principal component in this framework is the GtkTextBuffer, which is where the text data is
stored. Besides this, there are ancillary objects such as text tags, text iterators, and text marks, all of which
exist to support text selection, modi�cation, and formatting. And like all other GTK+ text-related objects,
the GtkTextView is designed to handle UTF-8 encoded characters and strings. This is especailly important
in the text view widget because the fact that one character can be encoded as multiple bytes implies that
there is a di�erence between character counts and byte counts. Character counts are referred to as o�sets,
while byte counts are called indexes. Certain functions work with byte indices and others work with o�sets,
and you must pay careful attention, otherwise, to quote the API documentation, �bad things will happen.�

2 Scrolling, ScrolledWindows, and Viewports

Imagine that you had a text viewing application, that could not scroll, in other words, it had no scrollbars.
Suppose we call this application SimpleText. If you try to open a text document that has 2000 lines in
SimpleText, it will resize itself so that it is large enough to display the entire document. In this case, the
�rst �fty lines would be visible on the screen, and the remaining lines would be o� the screen, as would most
of the SimpleText window. In order to read the rest of the text, you would have to grab the SimpleText

window and �slide it� upwards, provided that there were something to grab on the window's decoration. If
not, you could not read the document at all, so SimpleText would be limited to opening only those text
documents that could �t in its visible window. This would be a rather useless application.

Obviously, the ability to scroll must be a part of any practical, text viewing application, and so we begin
by discussing scrolling. In GTK+, scrolling is achieved through the use of the GtkScrolledWindow. The
GtkScrolledWindow class is a subclass of GtkBin; it is a container that can have a single child. When a
widget is added to a GtkScrolledWindow, the GtkScrolledWindow gives it scrollbars.

Giving a widget scrollbars does not give that widget the ability to scroll itself, no more than giving a pig
wings gives it the ability to �y. The child widget has to have the ability to scroll itself if the scrollbars in
the GtkScrolledWindow are going to make the child scroll. When a widget has the ability to scroll itself, it
is said to have native scrolling support.

Recall that scrollbars are a type of GtkRange widget, and that range widgets are basically widgets that
visualize GtkAdjustment objects. When a scrollbar's thumb is moved, or when it is adjusted by clicking in
its trough or on its stepper arrows, it causes the internal adjustment widget to update its value. Widgets that
have native scrolling support have, using the language of the API documentation, �slots� for GtkAdjustment
objects. What this means is that the widget has two GtkAdjustment members, one horizontal and one
vertical, and internal private functions that calculate what portions of the widget should be visible based
on the values of the adjustment objects. These private functions are invoked by signal handlers as scrollbar
values change, but also when other events, such as the window's being resized, take place.

1

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

The GtkTextView widget, along with the GtkTreeView and GtkLayout, has native scrolling support. This
implies that it is enough to put the text view into a scrolled window for its scrolling to �work�, using
gtk_container_add(). For example, if scrolled_window is a GtkScrolledWindow and text_view is a
GtkTextView then

gtk_container_add (GTK_CONTAINER (scrolled_window), text_view);

is all you need to do for text_view to be scrollable.

Widgets that do not have native scrolling support, such as GtkImage or GtkEventBox, must �rst be given that
support by adding them to a GtkViewport. The GtkViewport widget acts as an adaptor class, implementing
scrollability for child widgets that lack their own scrolling capabilities. The GtkViewport is then added to
the scrolled window. There are two ways to do this:

1. create the viewport, add the widget to it, and add the viewport to the scrolled window, or

2. use the convenience function gtk_scrolled_window_add_with_viewport(), which cuts out a step.

As there is no reason to have access to the viewport by itself, it is usually su�cient to use this convenience
function. For example, if image is a GtkImage, and we wish it to receive events on it and also have it
scrollable, then we would write the following code:

event_box = gtk_event_box_new ();

gtk_container_add (GTK_CONTAINER (event_box), image);

scrolled_window = gtk_scrolled_window_new (NULL, NULL);

gtk_scrolled_window_add_with_viewport (

GTK_SCROLLED_WINDOW (scrolled_window), event_box);

The function gtk_scrolled_window_new() creates a scrolled window. The last two arguments specify
pointers to the horizontal and vertical adjustments that the window should use. Setting these to NULL tells
GTK+ to create new adjustments for it, which is what you usually want to do.

Although it is enough just to create the scrolled window and add the child widget to it, you should make
a habit of setting the scrollbar policies of the window. You have probably noticed that some applications
are designed so that, if the data being displayed is small enough that there is no need for scrollbars, the
scrollbars disappear. Others always have scrollbars no matter how much data is displayable. The function

void gtk_scrolled_window_set_policy (GtkScrolledWindow *scrolled_window,

GtkPolicyType hscrollbar_policy,

GtkPolicyType vscrollbar_policy);

can be used to set the policy. The three possible values for the horizontal and vertical policies are

GTK_POLICY_ALWAYS The scrollbar is always visible.
GTK_POLICY_AUTOMATIC The scrollbar will appear and disappear as necessary. For example, when

all of a GtkCList can not be seen.
GTK_POLICY_NEVER The scrollbar will never appear.

I cannot think of a reason why you would want to set the policy to never display the scrollbars. The choice
is usually whether you want them to disappear when they are not needed, or not.

Scrolled windows have just a few methods besides these. Most likely you will not need to use them. You
can control the shadow that the window places around its child widget using

2

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

void gtk_scrolled_window_set_shadow_type (GtkScrolledWindow *scrolled_window,

GtkShadowType type);

The GtkShadowType argument should be one of

GTK_SHADOW_NONE No outline.
GTK_SHADOW_IN The outline is bevelled inwards.
GTK_SHADOW_OUT The outline is bevelled outwards like a button.
GTK_SHADOW_ETCHED_IN The outline has a sunken 3d appearance.
GTK_SHADOW_ETCHED_OUT The outline has a raised 3d appearance

You can control where the child widget should be positioned relative to the scrollbars. It has become standard
practice for the horizontal scrollbar to be at the bottom, ad the vertical one to the right. If you choose to
change these, you should have a very good reason. Nonetheless the method is

void gtk_scrolled_window_set_placement (GtkScrolledWindow *scrolled_window,

GtkCornerType window_placement);

You can read more about this in the API documentation.

There may be times when you want to share either of the embedded adjustments among two or more scrolled
windows or viewports. Suppose for example that you wanted two scrolled windows to share a single pair of
adjustment objects. To do this, you would need to

1. Create the �rst scrolled window with NULL adjustment pointers.

2. Get the adjustments from this �rst window.

3. Create the second window using the adjustments just obtained.

This is accomplished as follows (declarations omitted):

scrolled_window1 = gtk_scrolled_window_new (NULL, NULL);

h_adjustment = gtk_scrolled_window_get_hadjustment (

GTK_SCROLLED_WINDOW (scrolled_window1));

v_adjustment = gtk_scrolled_window_get_vadjustment (

GTK_SCROLLED_WINDOW (scrolled_window1));

scrolled_window2 = gtk_scrolled_window_new (h_adjustment, v_adjustment);

Alternatively, both scrolled windows could be created with NULL adjustments, and then the second's could
be replaced using

void gtk_scrolled_window_set_hadjustment (GtkScrolledWindow *scrolled_window,

GtkAdjustment *hadjustment);

or the equivalent function for vertical adjustments.

Example

A complete example of a simple program that can open any image �le and display it in a scrolled window is
the program scrolledwindow_demo1.c in the scrolledwindows subdirectory. The program in its entirety
is also displayed in Listing 1 in the appendix of these notes.

3

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

3 Overview of the GtkTextView

A GtkTextView widget contains a pointer to a GtkTextBuffer. There are two ways to create the textview �
either without specifying a particular bu�er (using gtk_text_view_new()), in which case it starts with an
empty bu�er, or by providing it with a pointer to an existing bu�er, using gtk_text_view_new_with_buffer():

GtkWidget * gtk_text_view_new (void);

GtkWidget * gtk_text_view_new_with_buffer (GtkTextBuffer *buffer);

The bu�er can be retrieved at any time using

GtkTextBuffer * gtk_text_view_get_buffer (GtkTextView *text_view);

or replaced using

void gtk_text_view_set_buffer (GtkTextView *text_view,

GtkTextBuffer *buffer);

Text in a bu�er can be marked with tags, objects of type GtkTextTag. A tag should be thought of as a set
of attributes that can be applied to a range of text. Tags can be assigned names for easy access, though
this is not a requirement. For example, a tag might be named "bold-italic". Naturally, if you name a tag
�bold-italic� it would be wise to make sure that the attributes that it embodies make the text bold and
italic. The GtkTextTag object, however, is much more general than an object encapsulating physical text
attributes. It can be used to make text visible or invisible, or editable or un-editable, for example. A single
GtkTextTag can be applied to any number of text ranges in any number of bu�ers.

The set of attributes that can be controlled by tags is quite extensive. You can pretty much control all
aspects of the appearance of the text, from its justi�cation, the spacing between lines, the character rise,
weight, scale, font-family, and so on, and the foreground and background colors and textures.

Tags are stored in a GtkTextTagTable. A tag table de�nes a set of tags that can be used together. Each
bu�er has one tag table associated with it; only tags from that tag table can be used with the bu�er.
However, multiple bu�ers can share a tag table.

The textview widget itself stores attributes that control the appearance of all text in the bu�er, independent
of the attributes de�ned by the tags. These attributes include indentation, justi�cation, margin and tab
settings, editability, and the spacing between paragraphs. However, these attributes will be overridden by the
tags. In other words, if the textview sets the spacing above a paragraph to be 10 pixels, then all paragraphs
will have 10 pixels above them, unless a tag with a di�erent spacing value is applied to that paragraph, in
which case that paragraph uses the spacing de�ned in the tag.

Locations within a text bu�er are represented in two di�erent ways. Text iterators, represented by the
GtkTextIter class, are objects that represent a position between two characters in the text bu�er. Unlike
many other objects in GTK+, text iterators reside on the user stack. It never has any data stored on the
heap and is therefore copiable (with shallow assignments.) However, any time that the text in the bu�er
is modi�ed in a way that a�ects the number of characters in the bu�er, all outstanding iterators become
invalid. This is true even if an iterator not near the changed text and even if an insertion and susquent
deletion leaves the number of characters the same. Because of this, iterators cannot be used to preserve
positions as the text in the bu�er is modi�ed.

Text marks are objects that can save positions in the text. Text marks belong to the GtkTextMark class.
Like an iterator, it is a position between characters in the text, like a cursor or an insertion point. Unlike
an iterator, a text mark can �oat in the bu�er, saving a position. In other words, if the text in the bu�er
changes, the mark adjusts its position accordingly.

For example, if the text on both the left and right sides of a mark is deleted, the mark stays in the position
that the text occupied. To be concrete, suppose that we represent the mark by a vertical bar and that a
text fragment in the bu�er looks like this:

4

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

abcde|fghijkl

with the mark between the �e� and the �f� (no space in between). If the string �defgh� is deleted, the text
becomes

abc|ijkl

If text is inserted at the mark, the mark ends up either to the left or to the right of the new text, depending
on its gravity. The standard text cursor in left-to-right languages is a mark with right gravity, because it
stays to the right of inserted text.

Like tags, marks can be either named or anonymous. There are special two marks built into GtkTextBuffer;
these are named "insert" and "selection_bound" and refer to the insertion point and the boundary of the
selection which is not the insertion point, respectively. If no text is selected, these two marks will be in the
same position. You can manipulate what is selected and where the cursor appears by moving these marks
around.

Last but not least of its capabilities, the textview widget's bu�er can contain pixbufs and widgets. The
GtkTextBuffer object has methods for loading both. Bu�ers that contain such non-character data have to
handled carefully, because of how these are represented within the bu�er. Details will follow below.

4 Textview Basics

We begin with the simplest of examples, namely loading a �le into a text bu�er and displaying it with almost
all of the default values the textview widget has. We will add margins, because the default is for the margins
to be set to zero pixels, which is just plain ugly. The application will also demonstrate how to access the
entire contents of the text bu�er so that they can be written to a �le, only in this case, they will be written
to the standard output stream.

We will also make the application a little easier to use by providing a button that opens a �le selection
dialog, �ltering for text �les only, and a button that writes the text to the output stream. The program
will use a structure of type AppState that stores the parts of the interface that need to be accessed by the
callbacks and the main program:

typede f s t r u c t _AppState
{

GtkWidget ∗window ;
GtkWidget ∗ text_view ;
GtkWidget ∗open_button ;
GtkWidget ∗print_button ;

} AppState ;

An instance of type AppState named app_state is declared in the main program and passed to the callbacks
through the user data parameter. The code to create the textview and scrolled window and set the policies
is:

app_state . text_view = gtk_text_view_new () ;
gtk_text_view_set_left_margin (GTK_TEXT_VIEW (app_state . text_view) , 1 0) ;
gtk_text_view_set_right_margin (GTK_TEXT_VIEW (app_state . text_view) , 1 0) ;

scrol led_window = gtk_scrolled_window_new (NULL, NULL) ;
gtk_container_add (GTK_CONTAINER (scrol led_window) , app_state . text_view) ;
gtk_scrol led_window_set_policy (GTK_SCROLLED_WINDOW (scrol led_window) ,

GTK_POLICY_AUTOMATIC,
GTK_POLICY_ALWAYS) ;

5

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

When the open button is clicked and the user selects a �le, the �le is loaded all at once into a UTF-8 string,
which is then loaded into the text bu�er. In order to do this, three steps are necessary:

1. Get the bu�er contained in the textview widget using gtk_text_view_get_buffer():

buffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (app_state->text_view));

2. Load the contents of the text �le using GLib's g_file_get_contents() into a string:

g_file_get_contents(filename, &contents, &nBytesInBuf, &error);

3. Set the text of the bu�er to be that contained in the string, using gtk_text_buffer_set_text():

gtk_text_buffer_set_text(buffer, contents, -1);

The gtk_text_buffer_set_text() function will replace the text currently in the bu�er, if any, with the
new text, handling any deallocation of memory as necessary. You do not need to free the pre-existing text
in any way. You do need to free the string after you call gtk_text_buffer_set_text(), as you no longer
need a reference to it, as well as the �lename that was returned by the �le chooser dialog box. The last
parameter of gtk_text_buffer_set_text() is the length of the text in bytes.

The relevant parts of the on_open_button() calback are as follows. Declarations are omitted.

void on_open_button (GtkWidget ∗button ,
AppState ∗app_state)

{
/∗ d i a l o g opened , r e s u l t s checked , f i l ename obtained s u c c e s s f u l l y ,

then t h i s . . .
∗/

/∗ Obtaining the bu f f e r a s s o c i a t ed with the widget . ∗/
bu f f e r = gtk_text_view_get_buffer (GTK_TEXT_VIEW (app_state−>text_view)) ;

/∗ Use the f i l ename to read i t s contents in to a gchar ∗ s t r i n g content s ∗/
i f (! g_f i le_get_contents (f i l ename , &contents , &nBytesInBuf , &e r r o r)) {

g_pr int f (e r ro r−>message) ;
g_clear_error (& e r r o r) ;
g_free (f i l ename) ;
e x i t (1) ;

}
/∗ Success , so copy contents i n to bu f f e r and f r e e the contents and
f i l ename s t r i n g s ∗/
gtk_text_buffer_set_text (bu f f e r , contents , −1);
g_free (f i l ename) ;
g_free (contents) ;
/∗ more s t u f f then return ∗/

}

To retrieve the entire contents of the text bu�er we can use either gtk_text_buffer_get_text() or
gtk_text_buffer_get_slice(). The di�erence is that the ...get_text variant ignores the non-character
data,i.e., pixbufs and widgets, whereas the ...get_slice variant puts placeholders into the returned string
to preserve character counts. Their prototypes are identical. The latter is

gchar * gtk_text_buffer_get_slice (GtkTextBuffer *buffer,

const GtkTextIter *start,

const GtkTextIter *end,

gboolean include_hidden_chars);

6

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

It takes a pointer to the bu�er, and pointers to the two iterators that store the starting and ending bounds
of the region to be copied. The last parameter should be set to TRUE if the returned string should include
characters marked as invisible in the bu�er, or FALSE if not.

GtkTextBuffer has a function for getting the start and end bounds in a bu�er:

void gtk_text_buffer_get_bounds (GtkTextBuffer *buffer,

GtkTextIter *start,

GtkTextIter *end);

When this returns, start and end contain iterators to the �rst and last positions in the bu�er, suitable for
passing to gtk_text_buffer_get_slice() to get the entire contents. Therefore, the function to print the
contents of the bu�er to a stream of any kind amounts to

{
/∗ d e c l a r a t i o n s omitted ; app_state i s a po in t e r to an AppState ob j e c t ∗/
bu f f e r = gtk_text_view_get_buffer (GTK_TEXT_VIEW(app_state−>text_view)) ;
i f (NULL != bu f f e r) {

gtk_text_buffer_get_bounds (bu f f e r , &s ta r t , &end) ;
t ex t = gtk_text_buf fer_get_sl ice (bu f f e r , &s ta r t , &end , FALSE) ;

/∗ wr i t e t ex t to whatever stream i t needs to be wr i t t en to , then ∗/
g_free (t ex t) ;

}
}

The entire program is contained in Listing 2 in the appendix.

5 Modifying Global textview Attributes

The next step is to add the ability to change the global attributes of the text using the functions of the
GtkTextView widget itself. In general, the widget has get and set methods for each of the following properties:

Property Name Property Type Description

accepts-tab gboolean whether input tab results in tab character entered
cursor-visible gboolean whether the cursor is visble
editable gboolean whether the text can be modi�ed by the user
indent gint the amount to indent paragraphs in pixels
justification GtkJustification left, right, or center justi�cation, e.g.,

GTK_JUSTIFY_LEFT, ...
left-margin gint width of the left margin in pixels
overwrite gboolean whether entered text overwrites existing text
pixels-above-lines gint pixels of blank space above paragraphs
pixels-below-lines gint pixels of blank space above paragraphs
pixels-inside-wrap gint pixels of blank space between wrapped lines in a

paragraph
right-margin gint width of the right margin in pixels
tabs PangoTabArray* custom tab positions
wrap-mode GtkWrapMode whether to wrap lines never, at word boundaries, or at

character boundaries, e.g., GTK_WRAP_NONE, ...

The methods for setting properties are of the form

7

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

void gtk_text_view_set_xxx (GtkTextView *text_view,

yyy setting);

where xxx is usually the property name with '_' replacing '-', and where the type of the setting, yyy,
corresponds to the type column in the list above. For example, the function that changes the pixels-above-
lines property is

void gtk_text_view_set_pixels_above_lines (GtkTextView *text_view,

int pixels_above_lines);

In addition to changing these properties, you can of course use the gtk_widget_modify() method to
change the widget's font, foreground-color, and all of the other properties that a GtkTextView inherits
from GtkWidget. As an example, the following function changes several of these properties all at once, given
a GtkTextView widget and a list of values to set in it.

void set_text_view_propert ies (GtkTextView ∗ textview ,
PangoFontDescription ∗ font ,
GtkWrapMode wrap_mode ,
G tkJu s t i f i c a t i o n j u s t i f i c a t i o n ,
gboolean i s_ed i tab l e ,
gboolean i s_v i s ib l e_cur so r ,
g in t left_margin ,
g in t right_margin

)
{

gtk_widget_modify_font (GTK_WIDGET(textv iew) , f ont) ;
gtk_text_view_set_wrap_mode (textview , wrap_mode) ;
gtk_text_view_set_just i f i cat ion (textview , j u s t i f i c a t i o n) ;
gtk_text_view_set_editable (textview , i s_ed i t ab l e) ;
gtk_text_view_set_cursor_vis ible (textview , i s_v i s i b l e_cu r s o r) ;
gtk_text_view_set_left_margin (textview , le f t_margin) ;
gtk_text_view_set_right_margin (textview , right_margin) ;

}

The demo program textview_demo2.c in the textviews directory contains a few controls in the main
application window that the user can use to modify the font, the editability, and the justi�cation of the text
on display. It can be generalized to modify all of the attributes, but in this case, one should put all of the
input widgets into a dialog box launched with an OPTIONS or a PREFERENCES button.

Modifying the tabs property is a harder task than the others, because it requires creating a PangoTabArray

containing the tab positions that you want to set. A PangoTabArray is a subclass of GBoxed, which is a generic
wrapper mechanism for arbitrary C structures de�ned in the GObject library. To create a PangoTabArray,
you can use

PangoTabArray * pango_tab_array_new (gint initial_size,

gboolean positions_in_pixels);

which is given the number of tab stops that the array should contain as well as a �ag indicating whether
or not the stop positions are given in pixels. The alternative is that the positions are given in Pango units,
which are the units that Pango uses internally. They are much higher resolution than pixels: one pixel is
1024 Pango units. If you use this function, you will have to add each stop one at a time using

void pango_tab_array_set_tab (PangoTabArray *tab_array,

gint tab_index,

PangoTabAlign alignment,

gint location);

8

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

This function is given the Pango tab array to �ll, the index within the arry of the tab stop to be set, the
value PANGO_TAB_LEFT, and �nally the location of the tab stop in whatever units were speci�ed when the
array was created. The PangoTabAlign enumeration has only one value at present, PANGO_TAB_LEFT, and
this must be used.

There is a second function for creating a tab array that makes it easier to create the tab stops, because they
can all be added at once:

PangoTabArray * pango_tab_array_new_with_positions (gint size,

gboolean positions_in_pixels,

PangoTabAlign first_alignment,

gint first_position,

...);

This has a variable-sized parameter list. It is given the number of tab stops that should be in the array (size),
whether the positions are in pixels or Pango units, and then a sequence of pairs of the form (PANGO_TAB_LEFT,
position of tab).

In either case you need to specify the positions of the tabs. If just picked an arbitrary value, as the font
changed, the width of the tabs would not change commensurately. Therefore, you should calculate the width
of the tab based on the current font and the width of a standard character, such as a black or the letter 'm'.

In general, to calculate the number of pixels in a character string that is rendering by Pango, you need to
do the following:

1. Create a Pango layout object using gtk_widget_create_pango_layout(), which creates a new PangoLayout

with the appropriate font map, font description, and base direction for drawing text for this widget.

2. Set the default font description for the layout using pango_layout_set_font_description().

3. Get the width in pixels of the string using pango_layout_get_pixel_size().

Assuming that tabwidth_string is a string of the number of blanks in a tab, and that all other variables
are appropriately de�ned, the code would be

PangoLayout *layout = gtk_widget_create_pango_layout(text_view, tabwidth_string);

pango_layout_set_font_description(layout, pango_font_descr);

pango_layout_get_pixel_size(layout, &width, NULL);

PangoTabArray *tab_array = pango_tab_array_new(1, TRUE);

pango_tab_array_set_tab(tab_array, 0, PANGO_TAB_LEFT, width);

You would then use this tab array to set the tabs in the textview with

gtk_text_view_set_tabs(GTK_TEXT_VIEW(text_view), tab_array);

and then free the tab array using pango_tab_array_free().

6 Text Bu�ers

One thing you should know about text bu�ers is that they always contain at least one line, but they may
contain zero characters. However, the last line in a text bu�er never ends in a line separator. All other lines
in the bu�er always end in a line separator. Line separators count as characters when computing character

9

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

counts and character o�sets. This means that an empty bu�er, one with zero characters is considered to
have a single line with no characters in it, and in particular, no line separator at the end.

So far, the only operations on text bu�ers that we have used are those that set the text on the entire
bu�er gtk_text_buffer_set_text(), and the function that gets a slice ot text between two bounds,
gtk_text_buffer_get_slice (). In order to do much more with text bu�ers, though, we need to work
with iterators and text marks.

Recall from the introductory comments above that a GtkTextIterator represents a position between two
characters, that it must be declared on the stack, and that any change to the bu�ere that changes the
character counts invalidates all current iterators.

In general, functions that insert or delete text require iterators to indicate the text to be modi�ed. These
include

void gtk_text_buffer_insert (GtkTextBuffer *buffer,

GtkTextIter *iter,

const gchar *text,

gint len);

which is given iter, a pointer to a text iterator, text, a UTF-8 text string, and its length in bytes, len.
If len is -1, text must be NULL-terminated and will be inserted in its entirety. This function is convenient
because, even though iter is invalidated when insertion occurs, the text bu�er's default signal handler
revalidates it to point to the end of the inserted text, so that a second call will insert text immediately after
the �rst.

Another form of insertion is

void gtk_text_buffer_insert_range (GtkTextBuffer *buffer,

GtkTextIter *iter,

const GtkTextIter *start,

const GtkTextIter *end);

which copies the text from the range speci�ed by start and end, to the position of iter. To be precise,
it copies text, tags, and pixbufs between start and end and inserts the copy at iter. This is important
because it preserves images and tags. The order of start and end doesn't matter � the smaller of the two
will be taken to be the start and the larger, the end.

There are several other functions for inserting text, but the next most useful is

void gtk_text_buffer_insert_at_cursor (GtkTextBuffer *buffer,

const gchar *text,

gint len);

which inserts the text at the position of the cursor. The length must be speci�ed in bytes, or if NULL-
terminated, then set to -1. The function to delete a range of text is

void gtk_text_buffer_delete (GtkTextBuffer *buffer,

GtkTextIter *start,

GtkTextIter *end);

which deletes the text between start and end. Again, the order of start and end does not matter because
gtk_text_buffer_delete() will reorder them. After the call, the iterators will be revalidated and start

and end will be point to the location where the text was deleted.

If you want to delete the currently selected text, you can use

10

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

gboolean gtk_text_buffer_delete_selection (GtkTextBuffer *buffer,

gboolean interactive,

gboolean default_editable);

If the interactive argument is TRUE, it means that the deletion is being requested by the user. Text marked
as uneditable cannot be deleted by the user, so setting interactive to TRUE prevents uneditable text from
being deleted by the user. If this function is being called by the program, not as a result of the user's request,
then you should set interactive to FALSE. You might want to call this function as a result of the program's
internal actions, for example, to delete hidden text.

The default_editable argument speci�es whether the textview's editable property is TRUE or FALSE. The
best way to use this is to pass the result of a call to gtk_text_view_get_editable(), which returns the
current state of this property. For example,

gtk_text_buffer_delete_selection(buffer, FALSE,

gtk_text_view_get_editable(GTK_TEXT_VIEW(text_view)));

These few functions, together with the gtk_buffer_set_text(), gtk_buffer_get_text(), and gtk_buffer_get_bounds(),
are a su�cient repertoire for most editing tasks. Although there are separate functions for retrieving
an iterator that with at the �rst position in the text bu�er, and one just after the last position, the
gtk_buffer_get_bounds() function does this anyway, so there is little need for them.

A more general function is

void gtk_text_buffer_get_iter_at_offset (GtkTextBuffer *buffer,

GtkTextIter *iter,

gint char_offset);

which positions the given iterator to a position char_offset chars from the start of the entire bu�er. If
char_offset is -1 or greater than the number of characters in the bu�er, iter is initialized to the end
iterator, the iterator one past the last valid character in the bu�er.

It is time to put these ideas together in an example. This simple example demonstrates how to use a few
editing features of a textbu�er. We modify the previous example by adding a few capabilities:

• We will add a button that lets the user add line numbers to the left of every line in the text bu�er.
The numbers will become part of the text of the �le, not just a decoration in the margin.

• We will add a button that lets the user delete selected text. Even though the user can delete selected
text in two other ways (by right-clicking, and in the pop-menu choosing �Cut� or �Delete�, or by using
the DELETE key on the keyboard), this will be an exercise in using some of the GtkTextBu�er's
functionality.

To add line numbers to the start of a line requires that we have a means of positioning an iterator at the
start of a line. There is such a function that positions an iterator at the start of a given line:

void gtk_text_buffer_get_iter_at_line (GtkTextBuffer *buffer,

GtkTextIter *iter,

gint line_number);

which, given the line number and the address of our locally declared iterator, will position it to the immediate
left of the �rst character in the line, so that an insertion at that iterator (with left gravity) will put the new
text just to the left of the line start. Thus, if str is a NULL-terminated string

11

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

gtk_text_buffer_get_iter_at_line(buffer, &iter, 100);

gtk_text_buffer_insert(buffer, &iter, str, -1);

will insert str at the start of line 100. There is a more general function that lets us position an iterator at
a particular o�set (number of characters) from the start of a given line:

void gtk_text_buffer_get_iter_at_line_offset

(GtkTextBuffer *buffer,

GtkTextIter *iter,

gint line_number,

gint char_offset);

You can see that gtk_text_buffer_get_iter_at_line() is just this more general one being called with
char_offset = 0.

To number all of the lines in the bu�er requires also that we can determine how many lines are in the �le.
While we could do this the hard way by searching for all newline characters, GtkTextBuffer has a function
that returns the line count:

gint gtk_text_buffer_get_line_count (GtkTextBuffer *buffer);

In fact it also has a function that returns the character count:

gint gtk_text_buffer_get_char_count (GtkTextBuffer *buffer);

Both of these functions are fast because the counts are cached. We can therefore number lines with the
following code fragment:

gchar s t r [2 0] ;
numlines = gtk_text_buffer_get_line_count (bu f f e r) ;

f o r (k = 0 ; k < numlines ; k++) {
g_snpr int f (s t r , 20 , "%5d " , k+1);
gtk_text_buffer_get_iter_at_line (bu f f e r , &i t e r , k) ;
gtk_text_buf fer_insert (bu f f e r , &i t e r , s t r , −1);

}

The function g_snprintf() is a GLib function like sprintf() from the C standard I/O library but safer.
It formats its arguments using the format string and writes the formatted string to the string in the �rst
argument, but it uses the second argument, in this case 20, to prevent bu�er over�ow by writing no more
than that many characters. Like sprintf() it requires that the caller allocate the memory for the resulting
string. In the above code snippet, the assumption is that the string will be no larger than 20 characters,
including the NULL character. This solves the �rst problem.

The second problem was already solved above. We just call

gtk_text_buffer_delete_selection(buffer, TRUE,

gtk_text_view_get_editable(GTK_TEXT_VIEW(text_view)));

which will delete the selected text, except for any text marked as uneditable.

12

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

6.1 Text Marks and the Cursor

As we mentioned before, a GtkTextMark represents a position between two characters. You can create marks,
named or unnamed, and soon you will see why you might want to create marks. To create a mark you use

GtkTextMark * gtk_text_buffer_create_mark (GtkTextBuffer *buffer,

const gchar *mark_name,

const GtkTextIter *where,

gboolean left_gravity);

This function creates a GtkTextMark object at the position of the given iterator and returns a pointer to it.
If you supply a name, then the mark will be known by this name and you can access it with the name. This
means that you do not need the return value of the function. You could call it like this:

gtk_text_buffer_create_mark(buffer, �midpoint�, &iter, FALSE);

and a mark will be created at the position of iter, with right-gravity instead of left (which is what you
want most of the time.) If you give it NULL instead of a name, it will be anonymous and you need to get the
return value to access it.

Marks are allocated by the bu�er itself. When you create a mark, the bu�er owns the reference to it, not
the caller. This is why you do not need to save the return value in a variable; you will not need to free or
unref it.

Remember that there are two prede�ned marks in a GtkTextBuffer, insert and selection_bound. The
insert mark is the same as the cursor position when the cursor is visible in the textview. If the user moves
the cursor, the insert moves to the new position. If a range of text is selected, the selection is bounded by
the insert mark and the selection_bound mark.

You can get the insert mark by calling

GtkTextMark * gtk_text_buffer_get_insert (GtkTextBuffer *buffer);

which returns the mark that represents the cursor (insertion point). You could also call the more general
function

GtkTextMark * gtk_text_buffer_get_mark (GtkTextBuffer *buffer,

const gchar *name);

giving it the string �insert�. Similarly, you can get the current position of the selection_bound mark with

GtkTextMark * gtk_text_buffer_get_selection_bound (GtkTextBuffer *buffer);

or by calling

gtk_text_buffer_get_mark(buffer, �selection_bound�)

When there is no text selected, the two marks are in the same position. You could therefore test whether
text is selected by getting the two marks and comparing their values. However, there is a function that does
this for you in a much more e�cient way:

gboolean gtk_text_buffer_get_has_selection (GtkTextBuffer *buffer);

13

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

You can move these marks around as well. If you move the insert mark, of course, the cursor will change
position. You can move them separately or together. There are various ways of doing this. If you want to
move a mark in general, you can use

void gtk_text_buffer_move_mark (GtkTextBuffer *buffer,

GtkTextMark *mark,

const GtkTextIter *where);

which is given a pointer to the mark to be moved, and the address of the iterator marking the location to
which to move the mark. As an iterator cannot exist in any once place too long, being easily wiped out by
a change in the bu�er contents, if you need a �placeholder� in a piece of text, you can put a mark where the
iterator is, knowing it will stay there.

If you gave you mark a name when you created it, then you can move it by name with

void gtk_text_buffer_move_mark_by_name (GtkTextBuffer *buffer,

const gchar *name,

const GtkTextIter *where);

This does the same thing, but you do not need a pointer to the mark, just its name.

The preceding functions move the mark. If you don't want to give up the spot where it currently is, you
should create a new mark at that position.

Getting back to the insert and selection_bound marks, if you need to move these in particular you can use

void gtk_text_buffer_place_cursor (GtkTextBuffer *buffer,

const GtkTextIter *where);

which move both of these marks to the same place, namely the position of the given iterator. Alternatively,
you can move them together to non-equal positions, which basically means you are de�ning a new selection
range. The function that does this is naturally,

void gtk_text_buffer_select_range (GtkTextBuffer *buffer,

const GtkTextIter *ins,

const GtkTextIter *bound);

It is important that you use this function, rather than moving them separately, because funny things will
happen on the screen.

We will return to an example that uses text marks after we cover formatting and tags.

7 Formatting and Tags

A range of text is formatted in a bu�er by applying text tags to it. There are several ways to do this. You
can create the tags, either named or unnamed, and store them in the text tag table in the bu�er, and then
apply these tags to existing text, or you can apply the tags to text as it is inserted. There is an assortment
of methods for doing each of these things.

Tags can be created in several ways. To create a tag and have it automatically placed into the bu�er's
GtkTextTagTable, use

14

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

GtkTextTag * gtk_text_buffer_create_tag (GtkTextBuffer *buffer,

const gchar *tag_name,

const gchar *first_property_name,

...);

The second parameter is the name of the tag, and after that is a list one or more attribute/value pairs. The
attribute is always a string, and its value depends upon the attribute itself. The value could be another
string, a number, or a more complex structure. The GtkTextTag class has over sixty di�erent con�gurable
properties. The appendix has a full list of them with their value types.

Examples

gtk_text_buffer_create_tag (buffer, "italic", "style", PANGO_STYLE_ITALIC, NULL);

gtk_text_buffer_create_tag (buffer, "monospace", "family", "monospace", NULL);

gtk_text_buffer_create_tag (buffer, "red_background", "background", "red", NULL);

desc = pango_font_description_from_string ("Purisa 12");

gtk_text_buffer_create_tag (buffer, "purisa_12", "font-desc", desc, NULL);

gtk_text_buffer_create_tag (buffer, "readonly", "editable", FALSE, NULL);

You can de�ne the properties of a tag either when it is created or after creation, by modifying the tag.

(more to come)

8 Searching in the TextView

There are two functions for searching in the text view for text, one that searches forward, and one that
searches backward. The prototype for the forward-searching function is

gboolean gtk_text_iter_forward_search (const GtkTextIter *iter,

const gchar *str,

GtkTextSearchFlags flags,

GtkTextIter *match_start,

GtkTextIter *match_end,

const GtkTextIter *limit);

which searches forward for str starting at the position in the text given by iter. If a match is found,
match_start is set to the �rst character of the match and match_end to the �rst character after the match.
The search will not continue past limit. Because the search algorithm is essentially a search through an
unsorted list, its running time is a linear or O(n) operation. If you have a very large �le, and your application
knows that the search string will not be present beyond a certain position in the text, it is foolish to allow
this function to search beyond that point. Therefore, if you can position an iterator at that position, then
you can limit the search by providing the address of that iterator as the last parameter.

If the GTK_TEXT_SEARCH_VISIBLE_ONLY �ag is present, the match may have invisible text interspersed in
str. i.e. str will be a possibly-noncontiguous subsequence of the matched range. Similarly, if you specify
GTK_TEXT_SEARCH_TEXT_ONLY, the match may have pixbufs or child widgets mixed inside the matched range.
If these �ags are not given, the match must be exact; the special 0xFFFC character in str will match embedded
pixbufs or child widgets. For example, if we let <hidden>...,\hidden> denote text tags that hide the text
in between, and if we are searching for the string �He was a liar� in a text bu�er that has the text

15

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

...He was <hidden>not <\hidden>a liar....

then with no �ags, the match will fail, but with GTK_TEXT_SEARCH_VISIBLE_ONLY set, the match will succeed,
setting match_start and match_end as illustrated.

...He was <hidden>not <\hidden>a liar....

^ ^

The function

gboolean gtk_text_iter_backward_search (const GtkTextIter *iter,

const gchar *str,

GtkTextSearchFlags flags,

GtkTextIter *match_start,

GtkTextIter *match_end,

const GtkTextIter *limit);

is the same as the forward search except that it searches backwards.

A simple function to search for an exact match in a text bu�er from its start and highlight the �rst occurrence
of the found text is

void search (GtkTextBuffer ∗ bu f f e r , const gchar ∗ t ex t)
{

GtkTextIter i t e r ;
GtkTextIter mstart , mend ;
gboolean found ;

/∗ Search from the s t a r t from bu f f e r f o r t ex t . ∗/
gtk_text_buf fer_get_start_iter (bu f f e r , &i t e r) ;
found = gtk_text_iter_forward_search (& i t e r , text , 0 ,

&mstart , &mend , NULL) ;

i f (found) {
/∗ I f found , h i l i g h t the text . ∗/
gtk_text_buffer_select_range (bu f f e r , &mstart , &mend) ;

}
}

Each time this function is called, it will start searching at the beginning of the text bu�er. If we want to
provide the ability to search for subsequent matches, then the application has to remember the position of
the last match. We cannot use an iterator to do this, because if any textual changes are made to the bu�er
between the �rst call to the function and a subsequent call, the iterator will be invalidated. Still worse, in
the above design, the iterators are local to the function and will be destroyed when the function terminates.

To be able to continue a search where we left o�, we need to place a text mark at the position of the last
match. Usually applications provide di�erent proxies for �nding a �rst occurrence and for �nding the �next�
occurrence. Typically there is a FIND and a FIND AGAIN menu item or button. Text barks are stored in
text bu�ers by name, so if we create a named text mark, we can set it to the position of the iterator, and
all code that needs to retrieve it can do so by using the appropriate get-method.

(to be continued...)

16

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

9 Scrolling

(to be continued...)

10 Inserting Things Other Than Text

(to be continued...)

GtkTextTag Properties

The following table lists all properties of a GtkTextTag object, with the type of value that can be set against
them.

Property Type

accumulative-margin gboolean

background gchar*

background-full-height gboolean

background-full-height-set gboolean

background-gdk GdkColor*

background-set gboolean

background-stipple GdkPixmap*

background-stipple-set gboolean

direction GtkTextDirection

editable gboolean

editable-set gboolean

family gchar*

family-set gboolean

font gchar*

font-desc PangoFontDescription*

foreground gchar*

foreground-gdk GdkColor*

foreground-set gboolean

foreground-stipple GdkPixmap*

foreground-stipple-set gboolean

indent gint

indent-set gboolean

invisible gboolean

invisible-set gboolean

justi�cation GtkJustification

justi�cation-set gboolean

language gchar*

language-set gboolean

left-margin gint

left-margin-set gboolean

name gchar*

paragraph-background gchar*

paragraph-background-gdk GdkColor*

paragraph-background-set gboolean

pixels-above-lines gint

pixels-above-lines-set gboolean

pixels-below-lines gint

17

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

Property Type

pixels-below-lines-set gboolean

pixels-inside-wrap gint

pixels-inside-wrap-set gboolean

right-margin gint

right-margin-set gboolean

rise gint

rise-set gboolean

scale gdouble

scale-set gboolean

size gint

size-points gdouble

size-set gboolean

stretch PangoStretch

stretch-set gboolean

strikethrough gboolean

strikethrough-set gboolean

style PangoStyle

style-set gboolean

tabs PangoTabArray*

tabs-set gboolean

underline PangoUnderline

underline-set gboolean

variant PangoVariant

variant-set gboolean

weight gint

weight-set gboolean

wrap-mode GtkWrapMode

wrap-mode-set gboolean

Listing: scrolledwindow_demo1.c

L i s t i n g : scrolledwindow_demo1 . c
#inc lude <gtk/gtk . h>

#de f i n e WINWIDTH 600
#de f i n e WINHEIGHT 600

typede f s t r u c t _App
{

GtkWidget ∗window ;
GtkWidget ∗event_box ;
GtkWidget ∗ image ;
GtkWidget ∗open_button ;
GtkWidget ∗ c lose_button ;

} AppState ;

/∗∗∗
Cal lback Function Prototypes

∗∗/

18

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

void on_open_button_clicked (GtkWidget ∗button ,
AppState ∗app_state) ;

void on_close_button_clicked (GtkWidget ∗button ,
AppState ∗app_state) ;

/∗∗∗
Main program

∗∗∗/

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗ al ignment ;
GtkWidget ∗ scrol led_window ;
GtkWidget ∗vbox ;
GtkWidget ∗hbox ;
AppState app_state ;

gtk_in i t (&argc , &argv) ;

/∗ Create a Window . ∗/
app_state . window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (app_state . window) ,

"Image Viewer ") ;

/∗ Set a decent d e f au l t s i z e f o r the window . ∗/
gtk_window_set_default_size (GTK_WINDOW (app_state . window) ,

WINWIDTH, WINHEIGHT) ;
g_signal_connect (G_OBJECT (app_state . window) , " des t roy " ,

G_CALLBACK (gtk_main_quit) ,
NULL) ;

vbox = gtk_vbox_new (FALSE, 2) ;
gtk_container_add (GTK_CONTAINER (app_state . window) , vbox) ;

/∗ Create the scro l lw indow and pack i t i n to the vbox ∗/
scrol led_window = gtk_scrolled_window_new (NULL, NULL) ;
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrol led_window) ,

GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC) ;

gtk_box_pack_start (GTK_BOX (vbox) , scrolled_window , TRUE, TRUE, 0) ;

a l ignment = gtk_alignment_new (0 . 5 , 0 . 5 , 0 , 0) ;

gtk_scrolled_window_add_with_viewport (
GTK_SCROLLED_WINDOW (scrol led_window) , al ignment) ;

app_state . event_box = gtk_event_box_new () ;
gtk_container_add (GTK_CONTAINER (al ignment) , app_state . event_box) ;

hbox = gtk_hbox_new (FALSE, 2) ;
gtk_box_pack_start (GTK_BOX (vbox) , hbox , 0 , 0 , 0) ;

app_state . open_button = gtk_button_new_with_label ("Open Image ") ;
gtk_box_pack_start (GTK_BOX (hbox) , app_state . open_button , 0 , 0 , 0) ;
g_signal_connect (G_OBJECT (app_state . open_button) , " c l i c k e d " ,

G_CALLBACK (on_open_button_clicked) ,
&app_state) ;

19

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

app_state . c lose_button = gtk_button_new_with_label (" Close Image ") ;
gtk_box_pack_start (GTK_BOX (hbox) , app_state . close_button , 0 , 0 , 0) ;
g_signal_connect (G_OBJECT (app_state . c lose_button) , " c l i c k e d " ,

G_CALLBACK (on_close_button_clicked) ,
&app_state) ;

gtk_widget_set_sens it ive (app_state . close_button , FALSE) ;
gtk_widget_set_sens it ive (app_state . open_button , TRUE) ;

gtk_widget_show_all (app_state . window) ;
gtk_main () ;

r e turn 0 ;
}

/∗∗
Cal lback Function De f i n i t i o n s

∗∗/

void on_open_button_clicked (GtkWidget ∗button ,
AppState ∗app_state)

{
GtkF i l eF i l t e r ∗ f i l t e r ;
GtkWidget ∗ d i a l o g ;
i n t r e s u l t ;
gchar ∗ f i l ename ;
GError ∗ e r r o r = NULL;
GdkPixbuf ∗ pixbuf ;

d i a l o g = gtk_fi le_chooser_dialog_new (" S e l e c t F i l e . . . " ,
GTK_WINDOW (app_state−>window) ,
GTK_FILE_CHOOSER_ACTION_OPEN,
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
NULL) ;

f i l t e r = gtk_f i l e_f i l t e r_new () ;
gtk_f i l e_f i l ter_set_name (f i l t e r , "Image F i l e s ") ;
gtk_f i le_f i l ter_add_pixbuf_formats (f i l t e r) ;
g tk_f i l e_chooser_add_f i l t e r (GTK_FILE_CHOOSER(d i a l o g) , f i l t e r) ;

gtk_f i l e_chooser_set_current_fo lder (GTK_FILE_CHOOSER (d i a l o g) ,
g_get_home_dir ()) ;

r e s u l t = gtk_dialog_run (GTK_DIALOG (d i a l o g)) ;
switch (r e s u l t) {
case GTK_RESPONSE_ACCEPT:

f i l ename = gtk_fi le_chooser_get_f i lename (GTK_FILE_CHOOSER (d i a l o g)) ;
gtk_widget_destroy (d i a l o g) ;
break ;

case GTK_RESPONSE_DELETE_EVENT:
case GTK_RESPONSE_CANCEL:
case GTK_RESPONSE_NONE:

gtk_widget_destroy (d i a l o g) ;
r e turn ;

}

i f (NULL == f i l ename) {
GtkWidget ∗msg ;

20

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

msg = gtk_message_dialog_new (GTK_WINDOW (app_state−>window) ,
GTK_DIALOG_MODAL,
GTK_MESSAGE_ERROR, GTK_BUTTONS_OK,
"Cannot open f i l e ") ;

gtk_dialog_run (GTK_DIALOG (msg)) ;
gtk_widget_destroy (msg) ;
r e turn ;

}

p ixbuf = gdk_pixbuf_new_from_file (f i l ename , &e r r o r) ;
i f (e r r o r != NULL)
{

g_print (" %s\n" , e r ror−>message) ;
g_error_free (e r r o r) ;
e r r o r = NULL;
re turn ;

}

app_state−>image = gtk_image_new_from_pixbuf (p ixbuf) ;
gtk_container_add (GTK_CONTAINER(app_state−>event_box) , app_state−>image) ;

g_object_unref (G_OBJECT(pixbuf)) ;
g_free (f i l ename) ;

gtk_widget_set_sens it ive (app_state−>close_button , TRUE) ;
gtk_widget_set_sens it ive (app_state−>open_button , FALSE) ;
gtk_widget_show_all (app_state−>window) ;

}

void on_close_button_clicked (GtkWidget ∗button ,
AppState ∗app_state)

{
gtk_widget_destroy (app_state−>image) ;
gtk_widget_set_sens it ive (app_state−>close_button , FALSE) ;
gtk_widget_set_sens it ive (app_state−>open_button , TRUE) ;

}

Listing: textview_demo1.c

L i s t i n g 2 . textview_demo1 . c

#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <gtk/gtk . h>
#inc lude <g l i b . h>
#inc lude <g l i b / gp r i n t f . h>

/∗∗
Global Constant and Type De f i n i t i o n s

∗∗/

#de f i n e WINWIDTH 600
#de f i n e WINHEIGHT 600

typede f s t r u c t _AppState
{

GtkWidget ∗window ;
GtkWidget ∗ text_view ;

21

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

GtkWidget ∗open_button ;
GtkWidget ∗print_button ;

} AppState ;

/∗∗∗
Cal lback Function Prototypes

∗∗/

void on_open_button (GtkWidget ∗button ,
AppState ∗app_state) ;

void on_print_button (GtkWidget ∗button ,
AppState ∗app_state) ;

/∗∗∗
Main program

∗∗∗/

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗ scrol led_window ;
GtkWidget ∗vbox ;
GtkWidget ∗hbox ;
AppState app_state ;

gtk_in i t (&argc , &argv) ;

/∗ Create the top−l e v e l window ∗/
app_state . window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (app_state . window) ,

"Text Viewer ") ;

/∗ Set a decent d e f au l t s i z e f o r the window . ∗/
gtk_window_set_default_size (GTK_WINDOW (app_state . window) ,

WINWIDTH, WINHEIGHT) ;
g_signal_connect (G_OBJECT (app_state . window) , " des t roy " ,

G_CALLBACK (gtk_main_quit) ,
NULL) ;

vbox = gtk_vbox_new (FALSE, 2) ;
gtk_container_add (GTK_CONTAINER (app_state . window) , vbox) ;

/∗ Create the textv iew and g ive i t some margins . ∗/
app_state . text_view = gtk_text_view_new () ;
gtk_text_view_set_left_margin (GTK_TEXT_VIEW (app_state . text_view) , 1 0) ;
gtk_text_view_set_right_margin (GTK_TEXT_VIEW (app_state . text_view) , 1 0) ;

scrol led_window = gtk_scrolled_window_new (NULL, NULL) ;
gtk_container_add (GTK_CONTAINER (scrol led_window) , app_state . text_view) ;
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrol led_window) ,

GTK_POLICY_AUTOMATIC,
GTK_POLICY_ALWAYS) ;

gtk_box_pack_start (GTK_BOX (vbox) , scrolled_window , 1 , 1 , 0) ;

/∗ Put an hbox below the textv iew to s t o r e the buttons ∗/

22

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

hbox = gtk_hbox_new (FALSE, 2) ;
gtk_box_pack_start (GTK_BOX (vbox) , hbox , 0 , 0 , 0) ;

/∗ Create the open and pr in t buttons , pack them in to the hbox ,
and attach to t h e i r c a l l b a c k s .

∗/
app_state . open_button = gtk_button_new_with_label ("Open F i l e ") ;
gtk_box_pack_start (GTK_BOX (hbox) , app_state . open_button , 0 , 0 , 0) ;
g_signal_connect (G_OBJECT (app_state . open_button) , " c l i c k e d " ,

G_CALLBACK (on_open_button) ,
&app_state) ;

app_state . print_button = gtk_button_new_with_label (" Pr int to Terminal ") ;
gtk_box_pack_start (GTK_BOX (hbox) , app_state . print_button , 0 , 0 , 0) ;
g_signal_connect (G_OBJECT (app_state . print_button) , " c l i c k e d " ,

G_CALLBACK (on_print_button) ,
&app_state) ;

gtk_widget_set_sens it ive (app_state . open_button , TRUE) ;
gtk_widget_set_sens it ive (app_state . print_button , FALSE) ;
gtk_widget_show_all (app_state . window) ;

gtk_main () ;
r e turn 0 ;

}
/∗∗

Cal lback Function De f i n i t i o n s
∗∗/

/∗∗
on_open_button

∗∗/
void on_open_button (GtkWidget ∗button ,

AppState ∗app_state)
{

GtkTextBuffer ∗ bu f f e r ;
G tkF i l eF i l t e r ∗ f i l t e r ;
GtkWidget ∗ d i a l o g ;
i n t r e s u l t ;
gchar ∗ f i l ename ;
GError ∗ e r r o r = NULL;
gu int nBytesInBuf ;
gchar ∗ contents ;

d i a l o g = gtk_fi le_chooser_dialog_new (" S e l e c t F i l e . . . " ,
GTK_WINDOW (app_state−>window) ,
GTK_FILE_CHOOSER_ACTION_OPEN,
GTK_STOCK_OK, GTK_RESPONSE_ACCEPT,
GTK_STOCK_CANCEL, GTK_RESPONSE_CANCEL,
NULL) ;

f i l t e r = gtk_f i l e_f i l t e r_new () ;
gtk_f i l e_f i l ter_set_name (f i l t e r , "Text F i l e s ") ;
gtk_file_filter_add_mime_type (f i l t e r , " t ext /∗") ;
gtk_f i l e_chooser_add_f i l t e r (GTK_FILE_CHOOSER(d i a l o g) , f i l t e r) ;
gtk_f i l e_chooser_set_current_fo lder (GTK_FILE_CHOOSER (d i a l o g) ,

g_get_home_dir ()) ;

/∗ Run the d i a l o g modally and get the user re sponse ∗/
r e s u l t = gtk_dialog_run (GTK_DIALOG (d i a l o g)) ;

23

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

switch (r e s u l t) {
case GTK_RESPONSE_ACCEPT:

f i l ename = gtk_fi le_chooser_get_f i lename (GTK_FILE_CHOOSER (d i a l o g)) ;
gtk_widget_destroy (d i a l o g) ;
break ;

case GTK_RESPONSE_DELETE_EVENT:
case GTK_RESPONSE_CANCEL:
case GTK_RESPONSE_NONE:

gtk_widget_destroy (d i a l o g) ;
r e turn ;

}

/∗ This should not happen , but to be s a f e . . ∗/
i f (NULL == f i l ename) {

GtkWidget ∗msg ;
msg = gtk_message_dialog_new (GTK_WINDOW (app_state−>window) ,

GTK_DIALOG_MODAL,
GTK_MESSAGE_ERROR, GTK_BUTTONS_OK,
" Fa i l ed to get f i l e ") ;

gtk_dialog_run (GTK_DIALOG (msg)) ;
gtk_widget_destroy (msg) ;
r e turn ;

}

/∗ Obtaining the bu f f e r a s s o c i a t ed with the widget . ∗/
bu f f e r = gtk_text_view_get_buffer (GTK_TEXT_VIEW (app_state−>text_view)) ;

/∗ Use the f i l ename to read i t s contents i n to a gchar ∗ s t r i n g contents ∗/
i f (! g_f i le_get_contents (f i l ename , &contents , &nBytesInBuf , &e r r o r)) {

g_pr int f (e r ror−>message) ;
g_clear_error (& e r r o r) ;
g_free (f i l ename) ;
e x i t (1) ;

}
/∗ Success , so copy contents in to bu f f e r and f r e e the contents and

f i l ename s t r i n g s
∗/
gtk_text_buffer_set_text (bu f f e r , contents , −1);
g_free (f i l ename) ;
g_free (contents) ;

gtk_widget_set_sens it ive (app_state−>print_button , TRUE) ;
gtk_widget_show_all (app_state−>window) ;

}

/∗∗
on_print_button

∗∗/
void on_print_button (GtkWidget ∗button ,

AppState ∗app_state)
{

GtkTextIter s t a r t ;
GtkTextIter end ;
gchar ∗ t ex t ;
GtkTextBuffer ∗ bu f f e r ;

bu f f e r = gtk_text_view_get_buffer (GTK_TEXT_VIEW(app_state−>text_view)) ;
i f (NULL != bu f f e r) {

24

CSci493.70 Graphical User Interface Programming

The GTK+ TextView Widget

Prof. Stewart Weiss

/∗ Obtain i t e r s f o r the s t a r t and end o f po in t s o f the bu f f e r ∗/
gtk_text_buffer_get_bounds (bu f f e r , &s ta r t , &end) ;

/∗ Get the e n t i r e bu f f e r t ex t . ∗/
text = gtk_text_buf fer_get_sl ice (bu f f e r , &s ta r t , &end , FALSE) ;

/∗ Print the text ∗/
g_print ("%s " , t ex t) ;
g_free (t ex t) ;

}

}

25

